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1. INTRODUCTION
The state-of-the-art techniques in synthetic biology re-

quire practitioners to design organisms at the DNA level.
This low-level manual process becomes unmanageable as the
size of a design grows. In electronic computing, high-level
languages and compilers have enabled computer scientists to
produce more sophisticated programs more quickly and with
less e↵ort. The same principles can be applied to synthetic
biology, making the design of large and complex systems
tractable.

In this paper, we define the problem of going from high-
level descriptions of behavior to DNA sequences, and de-
velop an automated solution using constraint satisfaction
and optimization algorithms. Our research builds on the
BioCompiler [1], which compiles an organism-level behav-
ioral description into a network of abstract biological parts.
This paper focuses on transforming such an abstract net-
work into a concrete network realized with specific DNA
sequences.

2. BACKGROUND
There are several natural mechanisms that can be manip-

ulated in a cell to achieve a desired behavior. Our work
focuses on transcriptional logic systems, where the compu-
tation is through the execution of a transcriptional network.
The steps of this execution are: 1) transcription—the copy-
ing of a region of DNA to RNA—a process that can be
regulated by protein-promoter interaction; 2) translation—
the linking together of amino acids in the order specified
in the RNA sequence into a protein; and 3) regulation—
the suppression or activation of DNA regions by the protein
produced.

In the Clotho [2] ontology, a feature is a DNA sequence
responsible for a specific biochemical behavior. We consider
transcriptional networks comprising two types of features:
promoters and sequences coding for regulating proteins. The
relationship between a regulating protein and the promoter
preceding the DNA region containing a gene determines if
and when that gene can be transcribed and then translated.
A regulating protein can repress or activate a promoter. Re-
pressors disable the ability of a promoter to initiate tran-
scription; activators enhance its ability to initiate transcrip-
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Figure 1: GRN visualizations: (Left) DNA sequence

representation with rectangles as protein coding se-

quences (PCS) and block arrows as promoters. Red lines

from PCS to promoters indicate repression. (Right) The

same GRN in a graph representation with labeled edges.

tion. Consequently, transcription of a gene downstream of
a promoter is controlled by activators and repressors of the
promoter. Moreover, a promoter may be regulated by mul-
tiple proteins, thus implementing relationships analogous to
boolean logic operations like NOT, AND, and IMPLIES.

A genetic regulatory network (GRN) is a bipartite
graph with labeled edges and each vertex associated with
a promoter (i.e., promoter vertex) or a protein coding se-
quence (i.e., protein vertex). In a GRN, the edges are al-
ways between a promoter vertex and a protein vertex. The
edges have one of the following labels produce, repress, or
activate. GRN visualizations are shown in Figure 1.

An abstract genetic regulatory network (AGRN) is
similar to a GRN, with the di↵erence that nodes are asso-
ciated with a set of promoters or a set of protein coding
sequences. An AGRN thus corresponds to a collection of
GRNs. Our goal is to pick a near-optimal of these GRNs
and choose a minimal set of available DNA parts covering
the GRN so that it can be implemented in a cell. This
translation of an AGRN to a GRN requires two kinds of
solutions: a topological solution, choosing a single feature
from the set associated with the node in the AGRN, such
that all repression and activation relationships are satisfied,
and a quantitative solution, which ensures that the choices
also satisfy chemical signal compatibility constraints.

3. TOPOLOGICAL SOLUTION
The qualitative relationships between biological features

are discovered by biologists experimentally. We define a
feature database as a bipartite graph with each node as-
sociated with a single feature and the edges labeled from
{repress, activate}. This is very similar to the GRN defini-
tion except the feature database does not have edges labeled
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Figure 2: The constraint graph (right) is isomor-

phic to the strict subgraph induced by the vertices

↵1, ↵5, P2, P5 from the feature database (left).

produce. The left side of Figure 2 is a feature database (edge
labels -/+ are short hand notations for repress and activate

respectively), and the vertices are associated with proteins
↵1, . . . , ↵5 and promoters P1, . . . , P5.

We assume existence of a feature database containing such
relationships. In translating an AGRN to a GRN by map-
ping each node to a feature, we need ensure that:

• The edges in the GRN are supported by the feature
database. If the features we selected are not biologi-
cally capable of interacting in the desired manner, the
GRN is not executable.

• The feature database does not imply additional rela-
tionships between the features of the GRN nodes. If
two features are known to interact with each other,
then whether or not we intended them to, they will
interact when implemented in the cell, possibly dis-
rupting the designed behavior.

For mapping the nodes of an AGRN to features we will
ignore the production edges (edges labeled as produce) in the
AGRN because they are unrelated to the two constraints
above since any promoter can produce any protein. The
constraint graph, induced by an AGRN is the same graph
as the AGRN except the production edges are dropped. The
right graph in Figure 2 is the constraint graph induced by
the AGRN in Figure 1 where each x

i

is associated with all
promoters and y

i

with all proteins.
In the topological solution of an AGRN w.r.t. a feature

database, we look for a subset of vertices S in the feature
database such that a strict subgraph of the feature database
that contains only those vertices in S and all edges between
them is isomorphic to the AGRN. More formally, a topo-

logical solution to an AGRN w.r.t. a feature database is a
mapping between the nodes of the AGRN and a strict sub-
graph S of the feature database such that: 1) The mapping
is an isomorphism between the induced constraint graph of
the AGRN and the strict subgraph induced by S; 2)The la-
bels of the edges in the constraint graph matches the edge
labels in the strict subgraph induced by S; 3) For every node
n in the AGRN, the set of features associated with n con-
tains the feature associated with the node that n is mapped
to. A topological solution to the AGRN in Figure 1 w.r.t. to
the feature database in Figure 2 maps node y1 to ↵1, y2 to
↵5, x1 to P2 and x2 to P5.

4. QUANTITATIVE SOLUTION
Just like a digital circuit is composed of several devices,

a GRN is a composition of biological devices. In a GRN,
there is a device per promoter node. The inputs of the device
are the protein nodes that are linked to the promoter with

Figure 3: The concentration of Y is a function of W.

The concentration of X is a function of Y. d1 is signal

compatible with d2 because 2.7 > 2.52 and 1.5 < 2.1.

repression and activation edges. The outputs of the device
are the protein nodes that are linked to the promoter with
production edges. Without loss of generality, we will assume
that each device has only one output. We will denote a
device as d = hI, p, oi where I is set of proteins which are
inputs, p is a promoter and o is the output protein. In Figure
3, the GRN on the left has two devices: d1 = h{W}, P1, Y i
and d2 = h{Y }, P2, Xi.

A device defines a function from the concentration of input
proteins to concentration of output protein. The sigmoidal
curves on the right side of Figure 3 are examples of such
functions for devices d1 and d2 (single-input devices). The
characteristics of the curve (slope, height, etc.) come from
the biochemical properties of the features that make up the
device. The slope (increasing vs. decreasing) is a function
of repression or activation relationships.

Adapting from digital logic, any output o of the device
higher (lower) than high

o

(low
o

) will be considered as boolean
true (false). Any output value between low

o

and high

o

has
an ill-defined truth value. Similar assumptions hold for the
device inputs. In Figure 3, looking at the curve for d1, the
low value for the output Y is 1.5 and the high value is 2.7.
The high and low values per input and output are the spec-

ifications of a device. We denote the specifications of a
device d = hI, p, oi as S

d

= hh, li where h (similarly l) is a
function from I [ {o} to reals for the high (similarly low)
signal threshold.

Consider two devices, d with the specifications hh, li and
d

0 with specifications hh0
, l

0i. If the output o of d is an input
of d

0 then d is signal compatible with d

0 i↵ h(o) > h

0(o)
and l(o) < l

0(o). Note that if the output of first device is
not an input to the second, by definition the devices are
compatible. Finally, a GRN G is a quantitative solution

to a AGRN A i↵ G corresponds to a topological solution of
A w.r.t. a feature database and every device pair in G is
signal compatible.

5. PROGRESS & RESULTS
By a reduction from subgraph isomorphism, we have shown

that finding a topological solution is NP-Complete. To ad-
dress this intractability, we have developed heuristic-based
algorithms for topological and quantitative solutions and im-
plemented them in a Clotho [2] app called MatchMaker.
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