24

A Software Stack for Specification and Robotic Execution
of Protocols for Synthetic Biological Engineering

Viktor Vasilev, Chenkai Liu, Traci Haddock, Swapnil Bhatia',

Aaron Adler, Fusun Yaman

Jacob Beal?, Jonathan Babb, Ron Weiss?, and
Douglas Densmore,

'Department of Electrical and Computer Engineering, Boston University, Boston, MA
2BBN Technologies, Cambridge, MA
3Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA
{vvasilev, nykai55, thaddock, swapnilb, dougd}@bu.edu,
{aadler, fyaman, jakebeal}@bbn.com, {jbabb, rweiss}@mit.edu

1. INTRODUCTION AND MOTIVATION

Synthetic biology is an emerging field in which biolo-
gists modify or design the behavior of organisms to engi-
neer systems that perform computation in diverse biolog-
ical applications. Synthetic biologists design such a com-
plex system by composing basic functional units—e.g., a
promoter or a gene—into a regulatory network that ex-
hibits the desired transcriptional behavior. As the desired
behavior becomes more sophisticated, the size of the net-
work grows, the complexity of the design becomes an im-
pending concern [2], and its assembly and verification, an
arduous task. The design complexity may be addressed
by powerful design tools, large circuits may be assembled
using novel assembly protocols, and the result may be ver-
ified by executing a comprehensive test suite. Performing
design, assembly, or verification manually however, is te-
dious, error-prone, not easily reproducible, and hence un-
scalable. We address the problem with a chain of tools [3,
8], each tool providing an optimized solution to the prob-
lem at a discrete grade of abstraction. This report focuses
on the assembly and verification stage—specifically, the
design of a software stack for high level specification of
biological protocols used in assembly and verification.

The primitive genetic parts comprising a larger system
are constructed to be compatible with one of the standard
assembly protocols such as BioBricks [7] or BioBytes [6].
Assembly planning algorithms [5] take a library of such
assembly-ready parts and a list of genetic devices to be
assembled, and produce an optimized hierarchy of assem-
bly steps. The execution of each step in this sequence re-
quires the execution of one or more basic biological proce-
dures such as a ligation or a restriction digest. A critical
gap exists between the specification of assembly plans at
this level—a sequence of biological procedures—and the
programming interface of liquid handling robots. Liquid
handling robots are typically programmed by chaining to-
gether a sequence of basic actions such as pipetting from
a specific well in one plate to another well, moving a plate
or other labware from a specific location on the robot deck
to another, or an action involving interfacing with auxil-
iary instruments such as incubators or mixers. While low-
level access to a robot may afford greater flexibility, it has

Work sponsored by DARPA 120 under contract HR0011-10-C-0168; the
views and conclusions contained in this document are those of the authors
and not DARPA or the U.S. Government.

IWDBDA June 2011, San Diego, CA

at least two disadvantages: 1) Low-level languages make
the specification of complex protocols and their composi-
tion into higher-level human understandable units diffi-
cult. The absence of modularity, powerful and well-defined
composition operators, and the need to manage labware
minutiae makes low-level programming difficult, unscal-
able, and the resulting code unmaintainable. 2) Specifying
protocols with a vendor-provided low-level language ties
the resulting code to a particular robot architecture, re-
moving the secondary advantages of programmed automa-
tion: portability, open exchange, and accelerated develop-
ment through reuse. In this work, we bridge the gap be-
tween high-level assembly protocols and a low-level robot
interface by designing a high-level language for biological
protocol specification called Puppeteer, and a robot Hard-
ware Abstraction Layer. The proposed design will allow
high level specification and composition of protocols, ac-
celerate protocol design, and make the assembly and veri-
fication of large systems tractable. Below, we describe our
design, its advantages, the current state of its implemen-
tation, and plans for future work.

2. ARCHITECTURE

Our solution comprises a five-layer stack as illustrated
in Figure 1. Using the Clotho platform [4], we develop two
applications for specifying and executing biological proto-
cols. The Assembly Planner [5] is the end-point of an end-
to-end design workflow [3] that produces an assembly plan
for synthetic biological devices, with each assembly step
annotated with the name of a biological protocol. Each
such protocol itself may be fully specified using another
Clotho application called PuppetShow, which provides an
environment for writing, testing, debugging, and execut-
ing biological protocols.

The protocols are written in a new high-level language
called Puppeteer. The Language layer comprises the Pup-
peteer interpreter and linker. A protocol specified in Pup-
peteer may contain Puppeteer instructions as well as ref-
erences to previously created Puppeteer programs avail-
able in a library. The Language layer expands and trans-
lates a Puppeteer protocol to a sequence of low-level com-
mands expressed in a Common Robot Instruction Set (CRIS).
CRIS provides a standardized instruction set that high
level biological protocol languages like Puppeteer may as-
sume to be supported by any robot. Any high-level lan-
guage may produce CRIS programs and any robot ven-

25

dor may support a superset of CRIS: this decouples robot
hardware details from biological protocol and specification
details and supports our goal of portability and protocol li-
brary reuse. The Hardware Layer—the external control
and I/O interface of a robot—is wrapped under a Hard-
ware Abstraction Layer (HAL). Vendor-provided software
for programming the robot may be proprietary and is used
to control the robot. An interface to it is provided by a
software bridge, which maps protocols expressed in CRIS
to sequences of native robot instructions.

The Resource Management layer maintains resource state

information and provides a standardizable high-level in-
terface for initializing, requesting, naming, aggregating,
and accessing resources to the Language layer, analogous
to a “system call” suite. This interface supports our goal of
removing the minutiae of resource management from the
protocol specification language.

3. IMPLEMENTATION

We have finished implementation of the Assembly Plan-
ner, with protocol name annotation, and will shortly begin
work on PuppetShow. Our current implementation of the
Puppeteer Language layer comprises an interpreter that
recognizes ten primitive instructions and a library of two
protocols. In its current embodiment, the interpreter is
a command line program that accepts Puppeteer instruc-
tions and uses JSON objects for communication with the
HAL. The interpreter can be run in one of two modes: user
mode and API mode. In user mode, the user inputs a
Puppeteer instruction, and the interpreter, after parsing
and executing it, returns information about the result. In
API mode, the interpreter uses JSON objects to communi-
cate with the Applications layer allowing any application
or programming language to interact with it. We have also
begun implementation of a bridge for the Tecan Freedom
Evo 150 robot. Our software stack is independent of the
Tecan robot and API—we use the Tecan as a prototypical
testbed for implementing the proposed stack. Our current
implementation is capable of accepting a BioBrick assem-
bly plan, linking it to a Puppeteer protocol library, and
executing it on a Tecan robot or simulator.

4. RELATED AND FUTURE WORK

To our knowledge, Biocoder [1] is the only language for
high-level specification of biological protocols with the goal
of clarity, precision, and eventually, automation and reuse
of protocol code. Biocoder is constructed as a C++ library
thus allowing protocol specifications to leverage C++ fea-
tures. When a protocol is compiled, a goal of the BioCoder
library is to produce a human executable list of unambigu-
ous English-language instructions equivalent to the orig-
inal biological protocol. In addition to supporting these
goals, Puppeteer will be the first to achieve an end-to-end
translation from a high-level biological protocol specifica-
tion to a sequence of actions on a robot.

Beyond protocol specification, Puppeteer also aims to
aid the testing of biological protocols and ease the veri-
fication of large systems, through specialized instructions.
The Resource manager may also exploit hardware paral-
lelism and schedule actions or protocols on one or more
robots efficiently. We plan to pursue these goals in subse-
quent versions of Puppeteer.

applications layer

CI.OTHO iAssemblyplannerkJ:i PuppetShow

! _protocol editor / library_;

£ g
=
2 :

language layer

Libraries

Fuppe’reer

Standard resource request
and management interface

resource management layer

CRIS
Common Robot Instruction Set

hardware abstraction layer
‘ Tecan bridge ‘ Pendor B bridgel }/endor @ bridgel

[Tecan C# API | [vendor B API | | vendor C API |

hardware layer
vendor C

|Tecan EVO 150| | vendor B “

Figure 1: A software stack that abstracts away de-
tails of automated robotic assembly, enabling auto-
mated synthetic biological engineering on a variety
of robotic platforms.

5. REFERENCES

[1] ANANTHANARAYANAN, V., AND THIES, W. Biocoder:
A programming language for standardizing and
automating biology protocols. J. of Biological
Engineering 4 (2010).

[2] ANDRIANANTOANDRO, E., BASU, S., KARIG, D. K.,
AND WEISS, R. Synthetic biology: new engineering
rules for an emerging discipline. Mol Syst Biol 2 (May
2006).

[3] BEAL, J., WEISS, R., DENSMORE, D., ADLER, A.,
BABB, J., BHATIA, S., DAVIDSOHN, N., HADDOCK,
T., YAMAN, F., SCHANTZ, R., AND LOYALL, J.
TASBE: A toolchain to accelerate synthetic biological
engineering. In IWBDA (June 2011). (submitted).

[4] DENSMORE, D., DEVENDER, A. V., JOHNSON, M.,
AND SRITANYARATANA, N. A platform-based design
environment for synthetic biological systems. In
TAPIA *09 (2009), ACM, pp. 24-29.

[5] DENSMORE, D., Hsiau, T. H. C., BATTEN, C.,
KITTLESON, J. T., AND DELOACHE, W. Algorithms
for automated DNA assembly. Nucleic Acids Research
(2010).

[6] ELLISON, M., RIDGWAY, D., FEDOR, J., GARSIDE,
E., ROBINSON, K., AND LLOYD, D. BioBytes
assembly standard. Tech. Rep. BBF RFC 47, The
BioBricks Foundation, 2009.

[7] KNIGHT, T. Idempotent vector design for standard
assembly of BioBricks. Tech. rep., MIT Synthetic
Biology Working Group Technical Reports, 2003.

[8] YAMAN, F., BHATIA, S., ADLER, A., DENSMORE, D.,
BEAL, J., WEISS, R., AND DAVIDSOHN, N. Toward
automated selection of parts for genetic regulatory
networks. In IWBDA (June 2011). (submitted).

