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Abstract

Interactions between people are typically conversational, multimodal, and symmetric.
In conversational interactions, information flows in both directions. In multimodal in-
teractions, people use multiple channels. In symmetric interactions, both participants
communicate multimodally, with the integration of and switching between modalities
basically effortless.

In contrast, consider typical human-computer interaction. It is almost always
unidirectional – we’re telling the machine what to do; it’s almost always unimodal
(can you type and use the mouse simultaneously?); and it’s symmetric only in the
disappointing sense that when you type, it types back at you.

There are a variety of things wrong with this picture. Perhaps chief among them
is that if communication is unidirectional, it must be complete and unambiguous,
exhaustively anticipating every detail and every misinterpretation. In brief, it’s ex-
hausting.

This thesis examines the benefits of creating multimodal human-computer dia-
logues that employ sketching and speech, aimed initially at the task of describing
early stage designs of simple mechanical devices. The goal of the system is to be a
collaborative partner, facilitating design conversations.

Two initial user studies provided key insights into multimodal communication:
simple questions are powerful, color choices are deliberate, and modalities are closely
coordinated.

These observations formed the basis for our multimodal interactive dialogue sys-
tem, or Midos. Midos makes possible a dynamic dialogue, i.e., one in which it
asks questions to resolve uncertainties or ambiguities. The benefits of a dialogue in
reducing the cognitive overhead of communication have long been known. We show
here that having the system able to ask questions is good, but for an unstructured
task like describing a design, knowing what questions to ask is crucial. We describe
an architecture that enables the system to accept partial information from the user,
then request details it considers relevant, noticeably lowering the cognitive overhead
of communicating.

The multimodal questions Midos asks are in addition purposefully designed to
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use the same multimodal integration pattern that people exhibited in our study.
Our evaluation of the system showed that Midos successfully engages the user in

a dialogue and produces the same conversational features as our initial human-human
conversation studies.

Thesis Supervisor: Randall Davis
Title: Professor
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Chapter 1

Introduction

Consider an ordinary conversation between two people. It typically involves multiple

modalities including speech, gesture, sketching, and facial expressions. Often, it is

symmetric in the sense that both participants communicate multimodally, with the

integration of and switching between modalities basically effortless. In contrast, most

current communication between a person and a computer is tedious, slow, and in most

cases requires the use of a keyboard and mouse. This thesis examines the benefits of

creating multimodal dialogues using sketching and speech between a computer and

a person, in particular for domains involving early stage design tasks. The goal of

the resulting system is to be a collaborative partner for a user describing these early

stage designs.

1.1 The Power and Limitations of Sketching

Pen-based input, including sketching, has been an input method for computers for

some time [54]. Previous computer systems have shown how sketching can provide

an easy and powerful way to input data directly into the computer. There are

many domains for which sketching is suitable for thinking about, communicating,

and recording the early stages of designs: chemistry diagrams [46], road design [10],

electrical circuit diagrams [6], floorplans, mechanical engineering sketches [30], Pow-

erPoint slides [34], maps for military course of action diagrams, maps for real estate,
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and more [19, 56, 16]. Some example sketches from these domains are shown in

Figure 1-1. This thesis focuses on the domain of early stage designs of simple me-

chanical devices, but provides techniques and ideas that are more generally applicable

to domains with graphical, verbal, and dynamic elements.

Figure 1-1: A few example sketches from different domains. Starting at the top left
and going clockwise: a family tree, a floorplan, a circuit diagram, and a chemistry
diagram.

Sketching allows users to easily and directly indicate particular components, fea-

tures, or properties. In circuit design, for example, instead of drawing on paper then

re-entering the design in an electrical CAD system, a user can directly enter an elec-

trical circuit diagram by sketching. The digital input can then be used to produce

a simulation of the circuit, quickly showing the user how the circuit functions and

enabling the user to spot errors. Once a basic sketch has been drawn, the user can

use sketching again to supply additional information. For example, after a user has

sketched a simple mechanical device, she can indicate a component’s angle, rotational

direction, or motion distance by simply drawing a stroke.

Although sketching can be very useful, expressing every detail about a device using
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sketching can be difficult or impossible. A simple example is Newton’s Cradle (see

Figure 1-2), a system of pendulums that consists of a row of metal balls on strings.

When you pull back a number of balls on one end, after a nearly elastic collision the

same number of balls will move outward from the other end of the system. Although

this system seems simple enough to sketch, it is in fact nearly impossible to draw

so that it operates properly. The device works because the pendulums are identical

and the metal balls just touch each other. Sketching the pendulums to have these

properties proves to be nearly impossible.

Figure 1-2: A sequence of images showing Newton’s Cradle when one of the pendu-
lums is pulled back and released.

A second shortcoming of sketching by itself is illustrated in Figure 1-3, drawn

by a user study participant. The sketch is incomprehensible without knowing what

was sketched. Knowing that it’s a sketch of a Lego robot helps slightly, and seeing

the photograph of the robot (Figure 1-4) helps more. Comparing the sketch and the

photograph, the relationships between parts of the sketch and the robot can be more

easily identified and the sketch makes considerably more sense. Still, there remain

parts of the sketch that cannot be identified. For example, different parts of the

sketch represent different perspectives of the robot.

1.2 Mixing in Speech

Sketching is powerful and expressive, but it does not provide the best way to com-

municate all information. Some information is notoriously difficult to express using

sketching alone, as Newton’s Cradle and the robot illustrate. A more comprehen-

sive interaction can be created by combining sketching and another modality such

as speech. The combination of modalities allows a user to communicate information

more easily, aims to lower the cognitive load of communication, and forms the basis
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Figure 1-3: A sketch of a robot.

Figure 1-4: The robot sketched in Figure 1-3.
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of a rich verbal and graphical communication with the user. With multiple modali-

ties to choose from, the user can communicate using whichever modality seems most

natural.

Why choose speech to complement the sketching? Sketching is often accompanied

by speech that, although informal, conveys a considerable amount of information.

People often use these sketches in a discussion about the design in which participants

can all sketch, speak, and ask or answer questions about the design. The interaction

about the design with another person helps work out details and uncover mistakes.

The combination of speech and sketching provides more information than either input

alone [9].

Returning to the earlier examples, speech provides an additional channel for in-

formation and makes descriptions of these devices possible. Adding speech to the

description of Newton’s Cradle clarifies the details of the device. The constraints can

be expressed verbally: “There are five identical, evenly spaced and touching pendu-

lums.” Then the sketch can be updated appropriately [2].

In the second example, the original sketch was accompanied by detailed speech

that described the different views of the robot, what the components of the robot

were, and how the components worked together to accomplish a goal. These details

are missing when the sketch is viewed alone. Figure 1-5 illustrates some of the different

views and components of the original robot sketch.

Some information can be expressed more easily using sketching, including infor-

mation about location and connectedness. Some information can be expressed more

easily using speech, including information about properties of objects. By combining

the two modalities, the user is free to use whichever one they find most natural.

1.3 Beyond Multimodal Input to Dialogue

The previous sections described several advantages to multimodal input that combines

speech and sketching. Although multimodal input contains more information, it also

has several drawbacks: interpreting the input is more complex, the potential sources
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(a) Side view (b) Top view (c) Gear box

Figure 1-5: Several views and components contained within the original robot sketch.

of errors and ambiguities increase, and it introduces the possibility that a user can

provide conflicting information in different modalities. First, errors might occur in

either the speech input or in the sketch input, increasing the quantity and complexity

of errors that a system must handle. Second, conflicts between modalities can arise

either directly from the user’s input or indirectly due to an incorrect recognition of

the user’s input. In any of these cases, the system can lack the information needed

to interpret the input from the user.

A central problem with open-ended, free-form input is information deficit: a key

piece of information is missing that prevents acting on the user’s input. Information

deficit can arise because the input modalities conflict, a reference is uncertain, or a

design is under-specified. Examples will illuminate the possible situations in more

detail.

Returning to Newton’s Cradle, imagine a situation in which the system has a

correct interpretation for most of what the user has expressed, but conflicting inputs

prevent it from determining a definitive action to take. If the user refers to four

pendulums but there are five drawn, there are two possible interpretations. The user

could actually want to refer to all five pendulums or she could be referring explicitly

to a particular subset of the pendulums. In a conversation between two people this

28



would be resolved with a question. Here the computer lacks a way to gather the

required information and thus cannot update the sketch.

Another case of information deficit in Newton’s Cradle could be a user referring

to a pendulum without indicating which pendulum. For example, saying “This pen-

dulum moves to the left” provides insufficient information because the system does

not know what pendulum the speech utterance “this” refers to.

An under-specified design is shown in Figure 1-6. In this spring-block system, the

direction of motion of the spring and the block cannot be determined from the sketch.

Even with multimodal input, the system cannot query the designer for the needed

information.

Figure 1-6: An under-specified spring/block system. The direction the spring will
move in is not specified.

How do people solve this problem? They talk with each other. Both dialogue

participants can use the same modalities to communicate. This thesis extends this

principle to human-computer interaction and enables the computer to present ambi-

guities or uncertainties to the user in the same way a person would ask a clarifying

question. The benefits of dialogue in lowering cognitive effort are well established:

in the absence of a dialogue, the speaker must anticipate and preemptively eliminate

every ambiguity and must ensure that the communication is both complete and un-

mistakably clear, an exhausting set of demands. Human conversation is (often) easy,

in part, because we rely on the listener to ask when things are unclear. Similarly, the

computer can leverage the interaction to ask questions of the user when necessary.

The uncertainties that arise from the multimodal inputs can likewise be handled by
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having the computer ask the user for clarification.

This thesis describes an approach that uses the computer to generate and ask the

user questions to clarify the details of her design. This allows the user to use multiple

modalities in her descriptions and leverages the computer’s ability to interpret the

device and focus the questions on the areas it needs help with. The dialogue approach

enables the user to more easily communicate the required information as opposed

to the alternative approach in which the user specifies a complete, unambiguous

description all at once.

The benefit of allowing open-ended input using both speech and sketching is clear,

but the limitations are also evident. Without providing an avenue for the system to

clarify the user’s intent or acquire new information, the system may not be able to

act on the user’s input.

1.4 Dialogue

The previous sections have made the case for supplementing sketching with speech

and for having a dialogue with the user, although a dialogue system is not a new

idea [36, 37, 49, 57], our approach is unique for the dynamic dialogues that it generates.

The task for the system in our target domain is to simulate the behavior of the

device using a qualitative physics simulator. The system asks the user for additional

information whenever it determines that the current physical situation is unclear or

ambiguous, or when the user’s input has not been understood. The user’s answers

(delivered multimodally) update the physical model or clarify a previous response

allowing the simulator to take the next step which, in turn, affects which questions

are asked next. The dialogue is thus driven from moment to moment by the physics,

not by a prepared script or a set of fields that need to be filled in to run a database

query.

Allowing the computer to ask the user for clarifications allows the system to

combine its knowledge of the system with the additional information the user supplies

in her answers. Partially understanding the situation allows the system to generate
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appropriate questions to ask the user. These multimodal conversations allow the user

to more easily describe the function and behavior, paths, trajectories, movements,

and structure of the device.

Our goal is not to have perfect speech or sketch recognition – rather we want to

do the best we can with both inputs and get a good idea of the user’s intention. By

making the system capable of a two-way dialogue, we can ask the user for clarifica-

tions. Benefits of having a two-way multimodal dialogue include encouraging a rich

dialogue with the user, and making the interaction closer to the kind of interaction

a user would have with another person. Asking the user questions will help keep

the user engaged, help the user refine and clarify the design, help the system learn

more about the sketch, and help make the system more of a partner in the design

process. An example illustrating the dynamic nature of the dialogue can be found in

Section 1.6.2.

1.5 Design Assistant

Our goal is to make the computer a collaborative partner for early design moving

beyond a sketching system to a multimodal system that incorporates speech and

dialogue capabilities. Although there are systems that allow the user to utter simple

spoken commands to a sketch system [15, 20, 37], our goal is to move beyond simple

commands to create a multimodal digital whiteboard that allows the user to have

a more natural conversation with the computer. Instead of being limited to simple

commands (like uttering “block” while pointing), the users should be able to say

whatever comes to mind. Although speech recognizers may not be able to understand

everything the user says, the goal is to have the system understand enough of the

sketch and enough of the speech to engage the user in a sensible conversation [1].

Traditional dialogue and command-driven systems make many assumptions about

what computer-human interaction should be like and typically involve quite struc-

tured dialogues. Although such approaches are tractable, well-understood, and some-

times quite useful, they might not be the optimal form of multimodal interaction for
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open-ended domains such as design. To better understand the characteristics of open-

ended dialogue in a design domain, we conducted a study of human-human dialogues

to ascertain the requirements for a multimodal conversational design assistant.

The challenges faced in building such a design assistant include integrating the

speech and sketching inputs, interpreting the input, and determining how certain the

system is of the interpretation. The system must:

• understand and manage the dialogue,

• determine what questions to ask the user,

• determine how and when to ask these questions, and

• understand the responses.

1.6 MIDOS

Based on results from user studies, the Multimodal Interactive DialOgue System, or

Midos, was constructed. Midos simulates the behavior of the device, asks the user

for additional information when necessary, and updates the physical model based on

the user’s answers. The conversation centers around changes that are occurring in

the devices. Midos generates a computer-driven dialogue that asks the user open-

ended questions in contrast to commercial systems, which can be computer driven,

but essentially follow a flow chart.

1.6.1 Example of MIDOS

The system asks its questions by generating multimodal output, for example, circling

a spring and asking aloud “Will this spring expand or contract?” Figure 1-7 illustrates

the stroke drawn by the system and the accompanying speech. The figure also shows

the user’s multimodal response. As we discuss below, there are several challenges in

generating coherent simultaneous speech and pen output and timing them properly:

much like an orchestra score, both the correctness of the individual parts (sketching
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and speech) and their timing are vital to the composition. Appendix B contains a

complete example of a Midos dialogue.

(a) “Will...” (b) “Will...” (c) “Will this...”

(d) “Will this spring...” (e) “Will this spring expand
or...”

(f) “Will this spring expand
or contract?”

(g) “It...” (h) “It expands.”

Figure 1-7: A series of screen shots that illustrate Midos asking a multimodal ques-
tion (1-7(a)-1-7(f)) and the user’s multimodal response (1-7(g)-1-7(h)).

1.6.2 Dynamic Dialogue Example

The dynamic nature of the conversation the system produces is illustrated by the

sequence of snapshots in Figure 1-8. Figure 1-8(a) contains three bodies: a left body

that has a velocity to the right, a middle body that has a downward velocity, and

a right body that has no velocity. There are several possible collisions that may
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occur; the system cannot figure out what collisions will or will not occur because the

velocities do not have magnitudes. We illustrate two possible outcomes to show the

dynamic nature of the dialogue.

Assume that in the first scenario the user intends for the middle body to collide

with the left body hitting it from above. But the initial situation is ambiguous: with

the information given we cannot determine which collisions, if any, will occur. As

a result, the system begins by asking “Do these two bodies collide?” while circling

the left and middle bodies (Figure 1-8(a)). The user answers “yes,” and the system

continues by asking a series of questions to determine what happens next (Figure 1-8).

In this case the user indicates exactly where the collision occurs (Figure 1-8(c)) and

then what the velocity of the left body is after the collision (Figure 1-8(e)). The left

body moves off the screen and so does the middle body due to the force of gravity.

The right body is positioned as shown in Figure 1-8(i).

Alternatively, if the user indicates that the left and middle bodies do not collide,

the system will ask questions about a collision between the left and right bodies

(shown in Figure 1-9). The collision between those bodies results in Figure 1-9(d), in

which the middle body has moved off the screen and the velocity of the left body has

been transferred to the right body. The final positions in this case are illustrated in

Figure 1-9(e) with only the left body still visible.

These two cases show how different the dialogue and the result can be based on

the user’s response to the system’s questions. In one case the left body moved off the

screen, and in the other case it is the only body still visible.
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(a) System asks: “It
looks like these shapes
will collide, do they?”

(b) After the user says
“Yes,” the system says
“These two bodies collide
here,” while circling the
collision location.

(c) The system contin-
ues: “Where on this
body does the contact oc-
cur?” while highlighting
the middle body.

(d) The user indicates
the contact location and
the positions of the bod-
ies are updated. The sys-
tem inquires: “Which of
these directions does this
shape move in?”

(e) The user replies us-
ing the shown stroke and
says: “This direction.”

(f) The system asks:
“How far does this shape
move?”

(g) The user replies: “It
goes forever.” The sys-
tem moves the body off
the screen

(h) The system asks
about the other shape
which starts to move
again due to gravity.

(i) The user replies and
the system moves that
the body off the screen
too.

Figure 1-8: A series of screen shots that indicate some of the questions and answers
when the user says the left and middle bodies collide.
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(a) System asks: “It
looks like these shapes
will collide, do they?”

(b) After the user says
“No” the system asks
about the other collisions
and asks: “It looks like
these shapes will collide,
do they?”

(c) This time the user
answers affirmatively and
the system proceeds to
ask about the middle
block. The system asks:
“How far does this shape
move?”

(d) The user tells the
system that it goes for-
ever and the middle block
is moved off the screen.
The system updates the
position of the left and
right bodies based on the
collision. The right body
has been moved to the
right and the system now
asks: “Which of these di-
rections does this shape
move in?”

(e) The user specifies a
direction and states that
the right block also moves
off screen.

Figure 1-9: An alternative series of screen shots of questions and answers when the
user says that the left and middle bodies do not collide.

36



1.7 Contributions

The principle contributions of this thesis are:

• the insights gathered from user studies that revealed useful facts about human

multimodal conversations,

• Midos with its dynamic dialogue and novel interaction, and

• the evaluation of Midos.

First, the data gathered for Midos from the various studies provided key in-

sights into how humans converse in a multimodal fashion using speech and sketching.

Among the key findings from the studies: simple questions can initiate long, detailed

responses, and complex coordination occurs between user’s speech and sketching.

Second, the key findings from these studies led to the creation of Midos. The

interaction style of Midos is novel: the user and the computer interact using the

same modalities and the same space to sketch in. In the interaction, the computer

asks sensible, tightly integrated, multimodal questions, in an attempt to elicit more

complete answers from the user; by more complete we mean answers that are more

complex than one-word yes/no answers. The user, in turn, can respond using a

combination of speech and sketching, which the system interprets based on expected

responses to the question it asked.

Another key principle of Midos is its dynamic nature. Midos determines the next

question based only on the current state of the physics and the question history. If

the physical layout or answers to the questions are different, then different questions

will be asked. The questions are asked to gather enough information to move the

simulation of the device to the next state. This information varies depending on the

state of the particular device. Many current speech systems have a set number of

specific fields that need to be filled in to run a query, in contrast to the open ended

nature of the question Midos uses. The system leverages what it knows to find out

what it doesn’t.
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Finally, we evaluate Midos to determine the strengths and weaknesses of the

system. The key results from this evaluation study include a reduced number of ink

color changes, detailed responses to questions, and an overall preference for Midos.

Participants also provided some suggestions for future improvements to Midos.

1.8 Organization of this Thesis

Three major themes are woven through this thesis. Multimodal dialogues are con-

structed using rich verbal and graphical communication, and the advantages of these

dialogues are discussed. The interaction is computer driven with the hypothesis that

giving the system more initiative and the ability to ask sensible questions will elicit

more complete answers from the user even if the system cannot completely under-

stand them. The progression between user study and system and back again traces

the evolution of the system.

Chapter 2 describes our initial user study that looked at speech and sketching

input. The subsequent chapter describes the details, results, and analysis of our more

recent study of multimodal dialogues. Chapter 4 provides a high-level view of the

chapters that discuss Midos in detail. Chapter 5 describes the multimodal inputs to

the system, and Chapter 6 describes the output modalities. The core of the system

that connects the input modalities to the output modalities is discussed in Chapter 7.

We then evaluate Midos and describe the results of the evaluation in Chapter 8. We

conclude with chapters about related work (Chapter 9), future work (Chapter 10),

and our contributions (Chapter 11).
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Chapter 2

Multimodal Device Descriptions

People naturally use speech and sketching when describing devices. One of our goals

is to allow the computer to understand and generate descriptions that are as sim-

ilar as possible to the descriptions that people naturally use. To see how people

naturally describe devices, a qualitative user study was conducted to examine the

informal speech and sketching of users describing a mechanical system. This user

study examines multimodal input; Chapter 3 discusses a study involving multimodal

dialogues.

The purpose of this study was to identify the vocabulary used to describe mechan-

ical systems and find out which features of the systems were described verbally and

which were drawn. In addition, relationships identified between the speech and the

sketching input data (e.g., timing, references, ordering) can be exploited to create a

system that responds to the user’s utterances. This chapter describes the study, the

key results, and the resulting system. More details can be found in [1, 2].

2.1 Motivation

Why do we want to combine sketching with speech? Sketching is a powerful modality

for capturing designs; enabling users to quickly draw a device in a modality that is

very similar to the way they would use a pen and a piece of paper. Many components

of devices are easily sketched, for example, the shape and location of components in
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the mechanical domain can easily be sketched (a pulley, a block, a pivot, etc.). But

there are limitations to the descriptive power of sketching. In particular, constraints

or relationships between components of the device are difficult to describe by using

sketching alone.

As mentioned in Chapter 1, Newton’s Cradle illustrates this difficulty clearly (see

Figure 2-1). For this device to correctly operate, all the component pendulums must

be identical, and the spacing must be precise so that the pendulums just touch each

other.

(a) The initial sketch (b) The start of the simula-
tion

(c) The simulation result

Figure 2-1: An initial sketch and the resulting simulation.

The limitations of sketching can be overcome by complementing the sketching with

speech. The additional information for Newton’s Cradle can be easily specified by

saying “there are three identical and touching pendulums.” The computer can then

adjust the sketch accordingly and create a simulation of the device that functions

correctly (see Figure 2-2).

(a) The start of the simula-
tion

(b) The simulation result

Figure 2-2: The corrected version of the simulation.

40



2.2 Study Setup

The study of multimodal input was designed so that it avoided biasing the participants

toward any particular vocabulary. The participants were shown small versions of six

mechanical devices and were instructed to draw enlarged versions of the devices on

a whiteboard while providing a verbal description [2]. The participants were told to

assume their audience was a small group of people, such as a physics tutorial. The

figures had marks to indicate replicated components and equal distances (Figure 2-

3). These graphical marks were provided to get an idea of how the participants

would describe identical or equally spaced objects without inadvertently biasing their

language with a written or spoken description that used a particular set of vocabulary.

The sessions were videotaped to facilitate subsequent analysis. The six participants

in the study were drawn from the M.I.T. community.

(a) (b) (c)

(d) (e) (f)

Figure 2-3: The devices that the participants sketched. The grey hash marks, grey
numbers, and equivalences indicate congruent components.
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2.3 Data Analysis

The data from the videos were analyzed by manually transcribing and assigning

timestamps for individual speech events (roughly, phrases) and sketching events (part

of a drawn object). Topic shifts and corresponding events were manually annotated

in a second pass over the data. For example, for the device in Figure 2-3(b) the three

sketched pendulums and the speech describing the three pendulums formed one topic.

Speech phrases about different topics were separated; speech about the objects on the

ramp in Figure 2-3(b) was separated from the speech describing the ramp itself.

2.4 Observations about the Data

The transcribed, timestamped, and grouped data were analyzed to collect the vo-

cabulary the participants used and uncover any patterns in the integration of their

speech and sketching. Several patterns emerged concerning disfluencies, key phases,

consecutive instances of shapes, timing gaps, and cross-modality coherence.

• Disfluencies (e.g., “ahh” and “umm”) were good indicators that the participant

was still talking about the same topic. For example, a participant said: “And

then we have this umm [draws rectangle] table.” The word “table” occurs after

the disfluency “umm” and is the conclusion of the sentence not the beginning

of a new sentence.

• Key phrases such as “there are”, “and”, and “then” were indicators that the

participant was starting a new topic. For example, a participant started a new

topic beginning with “then” in the following utterance: “Then we have like a

[drawing rectangles] divider in that box.”

• Consecutive instances of the same drawn shape indicate that the shapes rep-

resent the same type of object and that the topic is the same for all of the

instances. For example, in a device that contained two pulleys, most partici-

pants drew the pulleys consecutively.
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• A gap (an absence of input) of more than about 0.8 seconds in both the speech

and sketching inputs indicated a topic shift by the participant. In the following

utterance, the participant separated two topics with a pause: “So now we have

a box [draw box] with five circles [draw one circle] inside on the top [draws four

circles] [pause] And then we have like a...”

• Participants never talked about one topic while sketching about another topic

(a phenomenon we term cross-modality coherence). For example, participants

did not speak about springs while drawing a ramp.

• Other patterns were composed of combinations of the above observations. For

example, divisions between topics frequently occur when a pause precedes one

of the key phrases. One topic segment might include three sketched springs and

the speech phrase “[pause] And that’s ahh filled with springs.”

Recognizing the above patterns does not require any domain-specific knowledge

about mechanical devices and could apply to other domains. However, domain-

specific vocabulary is necessary for understanding the multimodal input and mod-

ifying the sketch. Linking the noun “pendulum” with the corresponding sketch com-

ponents – a rod connected to a circular body – is critical to resolving references to

“pendulum” or “pendulums.” A deeper understanding of the structure and func-

tion of a pendulum is required to act upon references to modifier adjectives such as

“identical” or “touching.”

2.5 Multimodal Input System Overview

The observations from the user study formed the design of a multimodal input system

that could modify a sketch created in ASSIST [4, 5] by combining speech recognition

and sketch interpretation. This combination allows users to describe the structure of

devices more completely and enables device descriptions that were not possible with

sketching alone. We describe this initial system and then discuss the shortcomings

that led to the subsequent user studies and Midos.
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Returning to the pendulums in the Newton’s Cradle example, the system enables

users to say things such as “there are three identical equally spaced pendulums” while

sketching several pendulums. The system will then respond by making the pendulums

identical and spacing them equally, as shown in Figure 2-4.

The system has several components including speech recognition, a rule system,

and an integration framework. The speech recognition sends an interpretation of the

speech to the rule system. The rule system then groups the speech and the sketching

into related units. These units are combined with domain specific knowledge in the

integration framework to modify the sketch.

Figure 2-4: Three successive steps in our multimodal system. The first image shows
the sketch before the user says anything. The second image shows the sketch after
the user says “there are three identical equally spaced pendulums.” The third image
shows the sketch after the user says that the pendulums are touching.

2.5.1 Speech Recognition

The vocabulary and sentences from the transcribed videos, augmented with a few ad-

ditional words (e.g., plurals and numbers), were used to create a speech recognizer for

the system. The speech understanding is provided by part of Galaxy[32], a speaker-

independent speech understanding system that functions in a continuous recognition

mode. The system allows users to talk without prior calibration of the system and

without the need to warn the system before each utterance. Both factors help create

a natural user interface.
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2.5.2 Rule System

One of the system’s tasks is grouping the speech and sketching that are related to

each other. This is accomplished using a rule system based on the observations

and patterns described in Section 2.4. The system uses a manually derived set of

approximately 50 integration rules that encapsulates the knowledge gathered from

the user study.

The rules were created using 18 data sets and are independent of specific features

and of the vocabulary of the mechanical engineering domain. The rules use properties

of the speech and sketching such as:

• grouping objects that are the same shape (e.g., grouping consecutively drawn

triangles),

• using the timing between the speech and sketching events to identify overlapping

events and pauses between events,

• looking for the key words that were good indicators that the user started a new

topic, and

• identifying key times that separate groups of related speech and sketching

events.

For example, one rule identifies key times based on speech events and indicates a

possible new group when a speech utterance starts with a key word that is preceded

by a pause. The result of the rules is a determination of the key times that delineate

groups of speech and sketching events that refer to the same objects. This might

produce a group that included two sketched springs and the speech phrase “that’s

suspended by springs on the bottom.”

2.5.3 Integrating Speech and Sketching

Integrating the speech into the sketching framework allows the user’s utterances to

affect the sketch. There are three steps to the processing of the speech and sketching:
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the grouping of speech and sketching described above, followed by an evaluation step

and an adjustment step.

After the rule system performs an initial partitioning of the speech and sketching

input, the subsequent steps make adjustments using domain specific knowledge and

vocabulary. In the second step, a search is conducted within a group found in the first

step to align the speech and sketching events (e.g., match the speech event containing

the word “pendulums” with any sketched pendulums). This step evaluates the speech

and sketching to determine how well the different input modalities match.

The third step adjusts the speech and sketch groupings by searching adjacent

groups when the speech and sketching inputs do not correspond exactly. This step

relaxes the constraints determined by the rules to provide more flexibility in the

grouping and accounts for domain specific vocabulary.

2.5.4 Sketch Modification

After the speech and sketching inputs are grouped, a grammar framework can be

used to modify the sketch appropriately. The grammar framework recognizes certain

nouns and adjectives and thereby produces a modest level of generality. For instance,

one noun it can recognize is “pendulum.” The system needs to be told what a

pendulum looks like (i.e., a rod connected to a circular body), so that it can link the

user’s intentions (e.g., drawing three identical pendulums) to a modification of the

sketch. Adjectives it can recognize include numbers and words such as “identical” and

“touching.” Adjectives are modifications to be made to the sketch (e.g., “touching”).

The framework is general enough to allow the system to be extended to work with

more examples.

In the Newton’s Cradle example, we needed to space the pendulums equally and

make them identical. Changing the sketch required performing a simple translation

from the descriptions, such as “equally spaced,” to a set of manipulation commands

that were implemented in ASSIST. Figure 2-4 illustrates one possible interaction that

results in a modification of the original sketch.
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2.5.5 Mismatched Inputs

The system has a minimal coping strategy for dealing with mismatched input modal-

ities. This situation arises when the number of objects identified in speech differs

from the number of objects identified in the sketch. The process of segmenting and

aligning the data also allows us, in a limited way, to use both modalities in interpre-

tation. For example, if the user draws three pendulums and says there are two, the

system must ignore the speech because it cannot identify the subset of pendulums.

If, however, the user says that there are four pendulums, the system will wait for

another pendulum to be drawn before attempting to group the speech and sketching

events. The difficulties in dealing with mismatched inputs led directly to the user

study described in Chapter 3, where we engage the participants in a dialogue and ask

them questions to clarify their multimodal input.

2.6 Results

The performance of the system is discussed in more detail in [1]; here we summarize

key results. To determine how well the rules work, the transcript files from the videos

were parsed and run though the rule system with each speech and sketching action

presented sequentially as if arriving from a user. The data used to test the system

was separate from the data used to create the rule system.

The results of running the rules on the video transcripts were compared in detail

to hand-generated results for 4 data sets that comprised the test set. There were 29

topic separation times in the hand-generated segmentations. The computer-generated

segmentation matched on 24 of these (82%) while generating 18 false positives. The

errors the system made fell into several different categories. Some of the false positives

were immaterial to parsing, but some were due to the system’s limited knowledge of

objects and spatial relationships. For example, an anchor on an object was grouped

with the object in the hand segmentation but not in the computer segmentation,

because the rules do not have any knowledge of the meaning of the anchor. Similarly,

the rules cannot take advantage of spatial relationships between different objects, for
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example a set of ramps. To correctly group these objects, the system would need

additional contextual information.

2.7 Limitations of the System

The speech and sketching system worked well for simple cases, but it is limited in

several ways:

• it requires the modalities to be in numerical agreement,

• the manipulations of the sketch that the system can perform are limited,

• the system has no knowledge of the spatial layout of the sketch, and

• the system can not communicate with the user in a bidirectional fashion, pre-

venting it from asking the user questions about ambiguities or the design.

First, the system can improve the sketch only if the interpreted speech and the

sketch are numerically consistent. If, for example, the user draws and talks about

three pendulums, but the system identifies only two of them in the sketch, it can

not edit the sketch. Likewise, if the system recognizes three sketched pendulums

but recognizes the speech as referring to a different number, it can not perform any

manipulations of the sketch.

Second, the system requires time-consuming, hand-coded manipulations of the

shapes for each word associated with a modification. For example, for pendulums

to be “identical,” the balls must be the same diameter, the rods must be the same

length, and they must be connected the same way. Additionally, the angle of the

pendulums is important, as is the starting location of the connected rods. These

manipulations are specific to pendulums; different manipulations would be required

for other adjectives or different objects.

Third, the system lacks knowledge about the spatial relationships between dif-

ferent sketched shapes, such as shapes drawn inside other shapes. For example, the

system did not know that a particular anchor was drawn inside of a ramp. Knowledge
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of these spatial relationships is necessary for recognizing and modifying more complex

sketches.

Fourth, the system can communicate in only one direction – listening to the user;

the system can not ask the user any questions. The system has no way to cope with

conflicting information from different input modalities. Bidirectional communication

would allow the system to converse with the user to resolve ambiguities and ask

questions about the design.

2.8 Broader Implications

This study produced a number of interesting observations about the language and

timing people use when describing simple mechanical devices. Three of these proved

to be particularly applicable to Midos are:

• Disfluencies (“ahh”, “umm”, etc.) indicated that participant was still talking

about the same topic,

• A substantial pause in both modalities was likely an indication of a topic change,

• People display cross-modality coherence, i.e., they do not talk about one topic

while sketching another.

This study led to an initial system [1] capable of handling sketching and speech,

but the initial system lacked the conversational capabilities to resolve uncertain in-

puts. As Chapter 4 illustrates, Midos seeks to overcome these shortcomings.
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Chapter 3

Human Multimodal Dialogue

Study

The shortcomings described in Chapter 2, notably the inability to query the user

about ambiguities or uncertainties in her input or in her sketch, led to the idea of

a dialogue with the user instead of a one-way interaction. When people engage in

conversation, they naturally exchange information in an efficient and effective man-

ner. These are characteristics that we hope to use to make communicating with a

computer as easy and beneficial as communicating with another person. Learning

more about the characteristics of human-human dialogues will help us construct a

computer system capable of having a similar type of conversation with a user.

We conducted a study to gather data about human-human multimodal dialogues

to illuminate the interaction characteristics of dialogues concerning the behavior of a

device. This chapter discusses the setup, execution, and results of this study, as well

as the implications of the study for Midos.

The intent of the study was to examine questions like: what are the characteristics

of bidirectional interaction; what questions are asked; how is the sketching surface

used to ask questions; how to learn new, out-of-vocabulary terms; how to handle

disfluency; how prosody reveals cues about the speakers intentions; how conversations

are structured; and how often and when it is okay to interrupt the user.
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3.1 Study Setup

The domain for this study was electric circuit diagrams. Eighteen subjects partici-

pated, all of them students in the Introductory Digital System Laboratory class at

M.I.T. The two conversers, the experimenter and subject, sat across a table from

each other (Figure 3-1), each with a Tablet PC. The Tablet PC was equipped with

software that provided a window to sketch in. The sketched strokes in each win-

dow were replicated in real time on the other tablet, in effect giving the participants

a single, shared sketching surface usable by two people at once. The experimenter

and subject communicated with each other using only verbal communication and by

sketching on the Tablet PCs.

Figure 3-1: Overhead view of the user study layout.

This software allowed the users to sketch and annotate the sketch by using a pen

and a highlighter. Buttons above the sketching area allowed users to switch between

five pen colors and five highlighter colors (Figure 3-2). Another button allowed users

to switch into or out of a pixel-based erase mode, allowing either user to erase parts

of any stroke. Finally, there was a button that allowed either user to create a blank

page.

The software recorded the (x, y) position, time, and pressure data for each point

in every stroke drawn by either user. To enhance the feeling of naturalness, strokes

were rendered so that they were thicker when the user applied more pressure. The

sketching data was recorded in real time and saved to a file.
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Figure 3-2: The window that the users sketched in.

Two video cameras and headset microphones, one for each person, were used to

record the study, with the audio and video synchronized. Each camera and the audio

from the corresponding microphone were connected to a hardware-based video encod-

ing card (Hauppauge WinTV-PVR 250), and the audio/video stream was digitized

using MPEG2 compression (720x480 pixels, 30 frames per second).

A physical barrier between the conversers was considered but not used, because

it would have created an unnatural environment and obstructed the video recording.

In order to encourage all communication to be done by interacting with the draw-

ing surface, the experimenter looked at his tablet and avoided eye contact with the

subject.

The user study software provided a variety of services, including ensuring that

the timestamps for the sketch data were synchronized with the audio and video data

(using the Network Time Protocol [41]), gathering data about study participants by

using a computer-based questionnaire, and displaying instructions. Having synchro-

nized data streams allows us to replay the study as it happened and facilitated analyz-

ing the timing of the speech and sketching events. To ensure participant anonymity

the data was anonymized using a random number.

53



3.1.1 Domain

Participants were instructed to sketch and talk about four different items: a floor plan

for a room or apartment with which they were familiar, the design for an AC/DC

transformer, the design for a full adder, and the final project they built for their digital

circuit design class. In addition, there were instructions and a warm-up condition to

familiarize the participants with the system and the interface. The floor plan sketch

was used to collect a few sketches in a different domain and to ensure that the subjects

were familiar with the interface before they had to describe the more complex circuits.

For the AC/DC transformer and the full adder, the participants were given a text

description of the circuit and a list of suggested components. They had the option

of viewing a schematic of the transformer or adder circuit (Figure 3-3) before they

began drawing, but the schematic was not visible while they were drawing.

(a) Full Adder
Schematic I

(b) Full Adder
Schematic II

(c) AC/DC Trans-
former Schematic

Figure 3-3: Schematic views of the full adder and the AC/DC transformer that the
participants could choose to view.

During the participant’s explanations, the experimenter added to the sketch and

asked simple questions about different components in it. The participants were com-

pensated with a movie gift certificate valued at $10.

We would ideally have conducted a Wizard-of-Oz study in which responses to the

participant would appear to be coming from a computer. We determined that this

was too difficult, given the open-ended nature of the speech and sketching in the

study, and instead used the study protocol described below.

Other systems that let users sketch and speak are typically limited in one or more

of the following dimensions:

• Command-based speech – The user talks to the system using one or two words,
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not natural speech, e.g. [47].

• Unidirectional communication – The system cannot ask questions or add things

to the sketch, e.g. [5, 37].

• Annotation instead of drawing – The user can only annotate an existing repre-

sentation, not use free-form drawing, e.g. [13, 36].

• Fixed set of graphical symbols – The user has to know the fixed symbol vocab-

ulary, e.g. [10].

3.2 Study Analysis

This section describes our initial data annotation process and our qualitative results

from the dialogue study. Section 3.3 describes the quantitative results from the study.

3.2.1 Data Annotation

At the conclusion of the study, the collected files included two movie files (one for the

participant and one for the experimenter) for each of the four items the users drew,

along with one XML file for each page of sketching. The XML files contained a full

record of the sketching by both the participant and the experimenter, with precise

timestamps for each point. These data files can be used to replay all of the events

and interactions that occurred in the study.

The software also allowed us to select parts of the audio tracks for playback and

transcription. This transcript was passed to the Sphinx speech recognizer [35] forced-

alignment function, which produced precise timestamps for each word. The tran-

scripts were verified by playing the segment of the audio file and confirming that it

contained the correct word.
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3.2.2 Study Statistics

Data from 6 of the 18 participants were processed as described above. Only 6 par-

ticipants’ data was analyzed due to the time-consuming nature of the transcription

process. Each of the 6 datasets contains data from each of the tasks (i.e., the warm-up

and four sketching tasks). The total length of the data is approximately 105 minutes;

about 17.5 minutes of data for each participant. Cumulatively, the six participants

drew 3206 strokes, 74 erase strokes, and spoke 10,848 instances of 1177 words. Cu-

mulatively, the experimenter drew 156 strokes, 3 erase strokes, and uttered 2282

instances of 334 words.

The participants varied in age from 20 to 22, with an average age of 21. There

were 14 male participants and 4 female participants. Fifteen of the participants were

right-handed. Two of the participants owned Tablet PCs, 11 reported having tried

one, and 5 reported never having used one.

3.2.3 Initial Results

The analysis of the study focused on how speech and sketching work together when

people are interacting with each other. Figure 3-4 shows one of the sketches, and

Figure 3-5 illustrates the type of speech that accompanied it. In general, the sketches

contained the circuit itself and additional strokes related to its function or identifica-

tion of its components. In Figure 3-6 the sketch contains the AC/DC converter and

strokes indicating the flow of current through the circuit in each of two operating con-

ditions. In addition, there are several highlighter strokes used to identify components

in the circuit.

Our qualitative analysis of the recorded and transcribed data has led to a series of

observations divided into five categories: sketching, language, multimodal interaction,

questions, and comments. Although these categories aren’t mutually exclusive, they

help organize the observations and the subsequent discussion.
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Figure 3-4: A sketch of a participant’s project from the dialogue user study.

Experimenter: so all these outputs are are they all the same these outputs
Participant: um they’re not the same they are the individual um um

data out connectors of each of the different um well actually
i shouldn’t be drawing that that at all

Experimenter: so then what’s what’s um this piece what’s that
Participant: that would be the mux for the data input actually

Participant: that was a uh uh yeah a memory bank with five hundred
and twelve um yep five hundred and twelve bits this ah i
could that i had read and write access to

Figure 3-5: Three fragments of the conversation about a participant’s project (Fig-
ure 3-4). Notice the disfluencies and repeated words (discussed in Section 3.2.5).
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Figure 3-6: A sketch from the dialogue study of an AC/DC transformer.

3.2.4 Observations about Sketching

Ink color was used in several different ways in the sketches:

• To identify regions that were already drawn

• To differentiate objects

• To add an “artistic” character

Identifying Regions

Color was frequently used to refer back to existing parts of the sketch and/or to link

different parts of the sketch together. In Figure 3-7, color was used to indicate the

location of rooms on a lower floor of the building. In Figure 3-8, three different colors

were used to indicate the correspondence between different parts of the sketch – the

labeled inputs in the left part of the sketch are highlighted with the same color as the

numeric input values in the right half of the sketch. In Figures 3-7 and 3-8, color

was critical for identifying references to or connections between parts of the sketch.
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Figure 3-7: Yellow highlighter was used to highlight locations of rooms on another
floor in a sketch of Next House dormitory.

Figure 3-8: Color was used to indicate corresponding areas of the sketch.

Differentiating Objects

Although some participants switched colors while drawing a circuit, different colors

were used more often in drawing floor plans to differentiate items. When it does

happen, the change in color is an excellent indication that the user is starting a new

object. This information would greatly aid sketch segmentation. Figures 3-9 and

3-10 are clear examples of a switch in color used to distinguish objects.

Figure 3-9: Color was used to differentiate the circuit components.
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Figure 3-10: Notice that each item in the sketch is a different color.

Figure 3-11: Notice the artistic use of blue and orange in the square in the lower-right
of this sketch.
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Adding Artistic Character

The lower-right corner of Figure 3-11, a sketch of a flight simulator, illustrates an

artistic use of color. In this case, the user was describing the operation of the attitude

indicator. The lower part is brown, indicating the ground, and the upper part is blue,

indicating the sky, just as in real attitude indicators. In other sketches, participants

used blue to indicate bodies of water, imitating the color of the real world.

Colors used like this still aid in segmenting the input, but also have deeper meaning

because they relate to real-world objects and associations. Matching the colors with

the references in the speech is one way the system can make connections between

the two inputs. For example, one participant drew a blue rectangle in his floor plan

sketch and referenced it by referring to the color: “this one’s blue [sic] is a sink.”

3.2.5 Language

The language chosen by participants provided several valuable insights. The most

readily apparent observation is that the speech tended to be highly disfluent, with fre-

quent word and phrase repetition. This phenomenon appears to occur more frequently

when participants are thinking about what to say. Second, participants’ responses

to questions posed to them tended to reuse words from the question. Third, not

unexpectedly, the speech utterances are related to what is currently being sketched.

Each of these observations is addressed in turn.

Disfluent, repetitious speech

The repetition of words or phrases in the speech occurred more frequently when

participants were thinking about what they wanted to say. One participant who was

describing the output “R” of a circuit said: “the result will be R, whereas... if so

let’s let’s eh the result will be R... is that if the carry in is carry eh if the carry in is

one, then the result here will be R, this is in case the carry in is one.” The speech

here is ungrammatical, disfluent, and repetitive, clearly making it more difficult for a

speech recognition system. However, the repetition of the key words “result,” “carry
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in,” and “R” should allow us to identify them as the key concepts being discussed.

The repetition could also provide evidence that the user is thinking about what to

say. This evidence about user uncertainty could help a system better assist the user

by asking questions or making suggestions.

Question responses

Participants’ responses to questions tended to reuse vocabulary from the question.

For example, when asked “so is this the, is that the diode?,” the participant replied:

“this is the diode, yeah.” A system could learn to expect a response to questions to

have phrasing similar to the question, facilitating the speech recognition task.

Speech relates to current sketching

Not unexpectedly, the participants’ speech relates to what they are currently sketch-

ing. For example, in one sketch the participant is drawing a box and while drawing it

says “so let’s see, we got the power converter over here;” the box is the representation

of the power converter he is talking about. This may facilitate matching the sketching

and speech events as they are occurring at roughly the same time.

3.2.6 Multimodal

This section discusses three varieties of multimodal interactions between the speech

and sketching inputs exhibited by the study subjects: referencing lists of items, ref-

erencing written words, and coordination between input modalities.

Referencing lists of items

Participants in the study would often verbally list several objects and sketch the

same objects using the same order in both speech and sketching. For example, when

sketching a floor plan, one participant said “eh so here I got a computer desk, here

I got another desk, and here I got my sink,” while sketching the objects in the same

order. In another sketch, a participant drew a data table and spoke the column labels
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aloud in the same order that he sketched them. The consistent ordering of objects

in both modalities provides another method for associating sketched objects with the

corresponding speech.

Referencing written words

Participants who wrote out words such as “codec” or “FPGA” referenced these words

in their speech, using phrases such as “so the the codec is pretty much built in, into

the, like uh standard, um, eh, standard, uh FPGA interface.” If the handwriting can

be recognized, this information can help identify the words in the speech input, as

has been done in [37]. Participants also wrote abbreviations for spoken words, for

example, “Cell.” for “Cellular.” Recognizing these textual abbreviations will also

help find correspondences between the sketch and the speech.

Coordination between input modalities

As noted, the speech often roughly matches whatever is currently being sketched.

Subjects indicated a tendency to enforce this coordination: if a subject’s speech got

too far ahead of his sketching, he typically slowed down or paused his speech to

compensate.

There were many examples in the study where the participant paused his speech

to finish drawing an object, and then continued talking. For example, one participant

said “and that’s also a data out line” and then finished writing “Data out” before

continuing the speech. In another case, a participant said “um, you come in and”

and then paused while he finished drawing an arrow to indicate the entrance to

the room. These observations provide additional data that the two modalities are

closely coordinated. This relationship can be used in a system to help match speech

utterances with sketching.
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3.2.7 Questions

When the experimenter asked the participants questions, the participants made re-

visions or explained their design in more depth. This section describes the types of

responses that participants gave.

Revision

Some questions caused the participant to make the sketch more accurate. Consider

Figure 3-12(a), when the experimenter asked if the three outputs, highlighted in

green were the same, the participant realized that the original sketch was inaccurate,

prompting him to revise it by replacing one data output line with three separate lines

(Figure 3-12(b)).

(a) Original (b) Revised

Figure 3-12: Left: the original sketch, right: after revision. One data output line in
the original image has been replaced by three in the revised image.
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Broader explanation

Questions about one part of the sketch also spurred explanations about other, unre-

lated parts of the sketch, as participants apparently decided other parts of the sketch

might be confusing as well, based on the question asked. When one participant was

asked about a label for a column in a data table, he not only clarified that label, he

explained the other four labels in the table.

Comparison questions also encouraged participants to explain the sketch in more

detail by explaining how the parts were or were not similar. For example, participants

were asked if several different gates in the full adder were the same. One participant’s

reply was that both were and gates, while another indicated that one was an and

gate and one was an or gate.

These elaborate answers to questions were an unexpected result of the study.

Asking questions keeps the participant engaged and encourages them to continue

talking. The resulting additional speech and sketching data would give a system a

better chance to understand the sketch. The interaction also appears to encourage

the participants to provide more information about the sketch, and it appears to

cause the participants to think more critically about the sketch so that they spot and

correct errors or ambiguities. Even simple questions like “Are these the same?”

seems to be enough to spark an extended response from the participant, especially if

there is a subtle aspect of the objects that was not previously revealed.

3.2.8 Comments

Participants made several comments during the study that did not relate directly to

the sketch, but still provided valuable information. Uncertainty was indicated through

the use of phrases such as “I believe” or “I don’t remember.” Some comments related

to the user interface, for example, “I’ll try to use a different color.” Other comments

referenced the appearance of the sketch. Two examples of this type of comment are:

“it’s all getting a little messy” and “I’ll draw openings like this. I don’t know... I

draw li... I drew like a switch before.” These comments still provide insight into the
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participant’s actions, but don’t relate directly to what they are sketching. Recognizing

the uncertainty or other comments could help create a more natural interface for the

users.

Another observation from the study is that both the participant and the experi-

menter are expected to be able to fill in words that their partner forgot. For example,

one participant expected the experimenter to help with forgotten vocabulary, and an-

other participant filled in a word that the experimenter forgot. This might be another

way that a system could interact with the user, saying something like “And this is

ah...” and pausing, prompting the user to identify the object.

3.3 Quantitative Analysis

Work in [49] reports on a series of user studies in which users interacted multimodally

with a simulated map system. They examined the types of overlap that occurred

between the speech and sketching, finding that the sketch input preceded the speech

input a large percentage of the time. The studies used a click-to-talk model for the

audio input, but further work showed that this did not affect the results.

A similar analysis was conducted on the data from our dialogue study. Software

was used to match corresponding sketching and speech events in the transcripts.

For example, the speech utterance “so we have an arrangement of four diodes” was

matched with the strokes making up the concurrently sketched diodes. The speech

was segmented into phrases based on pauses in the participants’ speech; we call these

groups phrase groups.

Phrase groups are subdivided into groups containing only a word and the strokes

it was referring to; for example, the word “diode” and the strokes making up the

diode. We call these groups word groups. These two types of groups were generated

in light of differences in the nature of overlap between the speech and the sketching

events as compared to the results from [49]. The overlap for the word groups matches

the results in [49] (sketch input preceded the speech input), but the results for the

phrase groups do not.
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The analysis of the nature of the overlap between the sketching and speech events

was also taken a step further. The start time of the sketching was compared with the

start time of the speech, and the end time of the sketching was compared with the end

time of the speech. Table 3.1 shows the nine possible ways the speech and sketching

can overlap and the percentage of time each occurred for the phrase groups. Table 3.2

shows the same thing for the word groups. The enumeration of overlap possibilities

is the same as in [49].

Speech Precedes Sketch Precedes Neither Precedes
(82%) (16%) (2%)

(1%) (1%) (0%)

(30%) (5%) (0%)

(51%) (11%) (2%)

Table 3.1: The temporal overlap patterns for the phrase groups. The alignment of
the speech and sketching is illustrated in each table cell. The percentage of phrase
groups in each category is also noted.

Speech Precedes Sketch Precedes Neither Precedes
(26%) (71%) (3%)

(0%) (1%) (0%)

(24%) (14%) (3%)

(2%) (55%) (0%)

Table 3.2: The temporal overlap patterns for the word groups. The alignment of the
speech and sketching is illustrated in each table cell. The percentage of word groups
in each category is also noted.

Unlike the videotape analysis used in [49] to determine the overlap between speech
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and sketching, the analysis presented here is based on precise timing data for speech

and timestamped points from the pen input, both measured in milliseconds. By

analyzing the video of several speech/sketching groups whose overlap difference was

very small, 50 milliseconds was determined to be a reasonable threshold to use for

calling two events simultaneous. The video was recorded at 30 frames per second

which is approximately one frame every 33 milliseconds.

The graphs in Figure 3-13 and Figure 3-14 illustrate the overlap between the

speech and sketching events groups in the data. The x-axis is the time in milliseconds

that the start of the sketching preceded the start of the speech. A negative number

means that the speech preceded the sketching. Similarly, the y-axis represents the

number of milliseconds that the end of the sketching preceded the end of the speech.

A negative number here means that the sketching ended after the speech. The words

in the corners of the graph provide a visual depiction of the overlap of the speech and

sketching in that quadrant.

Figure 3-13, depicting time differences for the word groups, shows that in most

cases (71%), the sketching precedes the word spoken; these data points are in the

right half of the graph. The plot has few groups (2%) in the upper-left quadrant,

i.e., very few instances of speech that starts first and ends last. Only 20% of the

data points are in the lower-left quadrant, i.e., speech that starts and ends first. The

graph further illustrates a dense cluster in the upper right. This represents groups

where sketching events precede the speech but the speech ends after the sketching.

The data is also tightly clustered near the origin; this shows that sketching occurred

temporally near the speech that referenced it.

The results for the word groups match the results reported by [49]. They reported

that 57% of the time writing preceded speech (our data shows 71%). The most

frequent overlap category they had was sketching starting first and ending first; this

was also our highest category for the word groups (55%).

The overlap that occurred in the phrase groups was also examined, as shown in

Table 3.1 and Figure 3-14. The phrase plot shows a different relationship from the

word plot. Most of the data points are in the left half of the graph (82%), representing
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Figure 3-13: A graph depicting the time differences between the start and end times
of the speech and sketching in each word group. The x-axis is the time in milliseconds
that the start of the sketching preceded the start of the speech. The y-axis represents
the number of milliseconds that the end of the sketching preceded the end of the
speech. The words in the corners of the graph give a visual depiction of the overlap
of the speech and sketching in that quadrant.
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Figure 3-14: A graph depicting the time differences between the start and end times
of the speech and sketching in each phrase group.
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phrases in which the speech preceded the sketching. Further, many of the data points

are in the upper-left quadrant, representing phrases in which the speech started before

the sketching and ended after it (51%).

This is the opposite of the data reported in [49], which reported that sketching

usually preceded the speech. There are several possible explanations for this differ-

ence. Their study looked at users sketching on an existing map, however, our study

examined users drawing on a blank page. Our users explained the function of the

various parts of their designs – something that doesn’t happen when locating places

on a map. Also, [49] used a Wizard-of-Oz study, so the participants were talking to

a computer instead of a person across the table. The interactive conversation in our

study could also have had an effect on the timing of the type of speech and sketching

data that was observed.

We tested whether the mean of the difference between speech onset and sketch

onset in Figures 3-13 (word group data) and 3-14 (phrase group data) was statisti-

cally different from zero. The word data mean different is 795 ms and is significant

(t(495) = 9.93, p<.01); likewise, the phrase data mean difference is -1427 ms and is

significant (t(313) = -10.7, p<.01).

3.4 Implications for Midos

Several results from the dialogue user study have important implications for Midos,

in particular, pen color, speech characteristics, and complex replies to questions.

This study revealed that pen color is important in interpreting the user’s intention.

Pen color was used in the sketches for several purposes:

• to refer back to existing parts of the sketch or link parts of the sketch together

as illustrated in Figure 3-8,

• to indicate a new topic as shown in the red and blue current paths in Figure 3-6,

• to reflect real world colors of objects.
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The importance of color changes provides evidence that Midos needs to attend to

color changes by both the user and the computer. However, our evaluation study of

Midos (Chapter 8) revealed that user color changes were less prevalent when ink was

automatically erased after each question.

The speech observations from the dialogue study echo the findings in our first

study. First, the participants’ speech was disfluent, especially when they appeared

to be thinking about what to say. Second, the responses to questions reused some of

the vocabulary contained in the question. Finally, concurrent speech and sketching

always referred to the same objects, we call this cross-modality coherence. This last

observation is particularly relevant for Midos because it provides an interpretation

for simultaneous input from different modalities.

Interesting answers resulted from the questions posed by the experimenter in the

study. Although the questions were simple, they produced lengthy, in-depth replies

that went beyond simply answering the question. The participants also revised the

sketches in response to the questions to make corrections or clarifications. These

observed responses suggest that engaging the user in a conversation will do more

than just resolve uncertainties in the physics simulation; we hypothesize that asking

the user questions will engage them more deeply in the sketch and help them correct

errors or clarify the design.
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Chapter 4

MIDOS: An Overview

Several key results and observations from the multimodal input study (Chapter 2) and

the dialogue study (Chapter 3) guided the development of our Multimodal Interactive

DialOgue System (Midos). In particular, the utility of even simple questions, the

concurrent nature of user’s speech and sketching (cross-modality coherence), pen color

changes, and extensive user replies hinted at some of the benefits of a multimodal

dialogue system. The goal for the system is to provide an easy and natural way for

the user to convey key information to the system. Instead of having the user try to

guess what information the system needs, Midos engages the user in a dialogue to

acquire the information necessary to proceed with a simulation, while leveraging the

system’s knowledge to pick reasonable questions to ask.

The initial domain for Midos is simple mechanical devices, similar to Rube-

Golderberg machines. Objects in the domain include bodies, springs, pulleys, weights,

pivots, and anchors. The combination of the user input and computer output creates a

two-way multimodal dialogue as both the user and computer use speech and sketching.

A benefit of the interaction with the user is that the system can take advantage of

the user’s knowledge; the system need only generate sensible questions and the user

can aid the simulation by answering them. Instead of having to simulate the entire

device at once, the system can generate a question and have the user supply more

detailed physics knowledge about the next state of the device.
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4.1 User Study Result – Simple Questions, Long

Answers

An important and interesting result from the dialogue user study was that simple

questions could elicit complex, ungrammatical, detailed, and long responses. These

long responses contrast with the simple, short answers in many current dialogue

systems. Although understanding the entirety of such responses is beyond the ca-

pabilities of current speech recognition and natural language systems, the ability to

capture this information would be quite important. In the future, this information

will allow a system to capture the rationale for designs. The rationale could then be

recalled when analyzing a design or referencing the design process at a later time.

4.2 User Study Result – Pen Color

Participants in the studies used the different colored pens and highlighters when

describing devices, changing color when switching topics or to indicate correlations

between different parts or different perspectives. This feature is replicated in Midos,

both as something the computer can do in its output and as something the user can

do with their input. However, the color usage in Midos is less frequent than in the

study because the computer can easily erase ink in Midos– part of the reason that

users may have switched colors in the study is to differentiate two concepts without

having to erase any ink.

4.3 User Study Result – Cross-Modality Coher-

ence

Another key aspect of the studies was the tight integration of the user’s speech and

sketching. Midos should expect cross-modality coherence and should be able to

generate output that also exhibits this property. In other words, the output of Midos

needs to carefully integrate the sketching and speech modalities.
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4.4 Example Devices

Midos can have conversations about mechanical devices, such as the four pictured

in Figure 4-1 that were used in the evaluation user study. Figure 4-1(a) is a bowling

ball roller. The block at the top-left falls, setting into motion a chain of actions that

cause the horizontal pin to hit the bowling ball that in turn causes the bowling pin

to fall down. The block at the top-left in Figure 4-1(b) is pushed to the right and

falls onto the spring. This eventually causes the other block to slide to the right and

onto the left block of the pulley. The right side of the pulley goes up and raises the

circular flag. The platform at the top-left of the switch flipper in Figure 4-1(c) is

moved to the left. The block at the top of the device falls down and hits the rotating

platform. The platform rotates pulling the middle stopper to the left. This allows the

other block to fall and slide down the ramps. Eventually the other block pushes the

left side of the pulley down, causing the right side of the pulley to move upward and

flip the switch. Finally, Figure 4-1(d) shows an egg cracker. The stopper on the left

is pulled up, then the spring pushes the block at the edge of the platform. The block

falls down causing the platform to rotate counter-clockwise. This in turn causes the

triangular knife to move downward pushing the egg into the frying pan.

4.5 MIDOS Goals

As discussed in previous chapters, there is information about a design that is not

supplied by the user in her initial sketch. The information could include properties

of the device or a missing component. Traditionally, because systems cannot ask

questions, the user must think of this information ahead of time and provide the

information all at once. Accurately describing the details of a device in this way is

error-prone and awkward.

We propose a different approach. The user provides a first approximation of

the device, and then the system determines the information it needs and asks the

appropriate questions. This approach requires less cognitive overhead and is both
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(a) Bowling ball roller (b) Flag raiser

(c) Switch flipper (d) Egg cracker

Figure 4-1: Four devices that Midos can discuss.

more natural and more like discussing the design with another person.

One of the goals of Midos is to offer interaction that replicates, as closely as

possible, a design discussion with another person. Midos currently is applied to the

domain of simple mechanical devices, however, the techniques described in this thesis

are also applicable to other domains. In particular, it is applicable to domains that

have ambiguity in them as well as graphical, verbal, and dynamic elements. The

system needs to be able to both determine the information it requires and generate

appropriate questions to ask the user.

Several new issues are raised by multimodal interactive dialogue, including the

timing necessary for the smooth integration of the outgoing speech and sketching,

and the semi-persistent nature of the ink drawn on a shared drawing surface. Midos

creates a novel interaction by combining the speech and sketching modalities in a

symmetric interaction, i.e., both participants communicate multimodally.

A long-term goal of the multimodal interactions like the one created in Midos
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is for people to interact more naturally with computers. Our hypothesis is that as

the response from the computer is more human-like, humans will be more willing to

provide detailed, rich, answers to the system.

4.6 MIDOS Components

Midos is built from several components: input acquisition, output synthesis, and

the core components, which include the user interface, qualitative physics simulator,

question selection, and dialogue control components. These components are described

briefly here, and in more detail in the subsequent chapters. Figure 4-2 illustrates how

these components are connected.

Figure 4-2: An overview of the Midos components and how they are connected.

4.6.1 Input Acquisition

Midos has two input modalities: speech and sketching, acquired separately using

the Microsoft Speech Recognizer and a sketch recognition framework developed by

other members of the Multimodal Understanding Group [51]. Each of the recognition

systems returns an n-best list of interpretations. The results are combined with the

possible expected responses from the user. Then Midos selects one of the possible

interpretations. This process is described in detail in Chapter 5.
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4.6.2 Output Synthesis

The output modalities in Midos are likewise (synthesized) speech and (synthesized)

sketching. Speech is generated using the AT&T Natural Voices Speech Synthesizer;

synthesized strokes are generated with a synthesizer developed for Midos. The obser-

vations from the studies revealed a tight integration and coordination of participant’s

speech and sketching. The dynamic nature of the questions that Midos asks and the

varying size and position of the shapes in the sketch necessitate different outgoing

strokes and different timing of the output modalities for each instance of a question.

Replicating the tight integration and cross-modality coherence in the synthesized out-

put, while accommodating the dynamic timing of the output, required the creation

of a language to describe the relationship between the speech and sketching. The

details of the output synthesis are discussed in Chapter 6.

4.6.3 Core Components

Several core components of Midos bridge the gap between input acquisition and the

output synthesis: the user interface, the qualitative physics simulator, the question

selection, and the dialogue control. These components are discussed briefly here and

in more depth in Chapter 7.

User Interface

Figure 4-3 shows the Midos user interface. Based on the observations about color

changing in the dialogue user study, several pen and highlighter colors are available

to the user. The bottom of the window displays the computer’s outgoing speech and

the user’s recognized speech. The interface is written in C# and integrates the input

acquisition and output synthesis components. The data is sent to or from the rest of

the core system which is written in Java.
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Figure 4-3: The Midos user interface.
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Qualitative Physics Simulator

The physics simulator acts as a kind of inference engine, taking the current state

of the world and trying to predict the next state. When the next state cannot be

determined unambiguously, the system creates a set of information requests that are

eventually turned into questions. The user’s answers to these questions provide data

used to update the system’s physics model, allowing it to continue simulating the

device.

Question Selection

One of the many information requests that the physics simulator generates must be

selected and turned into a question to ask the user. The question selection compo-

nent of the system accomplishes both of these tasks. The next information request is

selected based on the types of the potential requests and recently requested informa-

tion. After a particular request has been selected, a question is formed and sent to

the output synthesizers.

Dialogue Control

Dialogue control handles the high-level functions of Midos. For example, the dialogue

control is responsible for stopping the outgoing modalities if the user interrupts the

system. In addition, this part of the system processes the result of the user input.

This includes everything from sending an acknowledgment to the user to updating

the state of the physics model to determining that the user hasn’t provided enough

input and a follow-up question is needed.
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Chapter 5

Multimodal Input Acquisition

Users can communicate with Midos using sketching and speech. This chapter de-

scribes the acquisition process for each input modality and the procedure for combin-

ing them.

5.1 Speech Recognition

Speech recognition systems vary along several dimensions including amount of train-

ing, dictation performance, user input constraints, and ease of integration. Midos

needed a speech recognition system with limited training, good performance in dicta-

tion mode, flexibility in allowed user input, and easy integration with the rest of the

system. Based on these parameters, the Microsoft speech recognizer was chosen. It

is easily integrated with the other user interface code in C#, requires little training

for the user, and provides reasonable recognition results without limiting the user’s

speech.

The speech recognizer is used in dictation mode, which does not force the user to

conform to a predefined grammar. Dictation mode allows the user to say anything

she wants, presenting a difficult task for the speech understander. Midos takes a

measured approach to this problem by focusing on matching the user’s speech to an

expected utterance. It requires that the user’s speech roughly match one of these

preset phrases. This tradeoff restricts the user less than a grammar would, and frees
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Midos from having to do extensive natural language understanding. As a conse-

quence, Midos cannot understand everything that the user might say such as speech

containing negations or complex utterances (see Chapter 10 for more discussion). All

of the expected utterances are listed in Appendix A.

The speech recognizer returns a ranked n-best list of possible spoken utterances.

Midos then calculates a score for the utterance by comparing the spoken speech with

the list of possible speech phrases that the system expects in response to the question

it asked. The scoring metric is a percentage calculated as:

MatchPercentage =
MatchedWords− 0.5 ∗ ExtraWords

ExpectedWords

where MatchedWords is the number of words in the user’s speech that matched

words in the expected speech and ExtraWords is the number of words in the user’s

speech that do not match any word in the expected speech excluding the words: the, a,

in, to. ExpectedWords is the number of words in the expected speech utterance. Note

that the formula penalizes missing words as they are excluded from MatchedWords.

The entries in the n-best list of recognized speech are first given a base score

according to the position in the n-best list. The top entry is given a score of 10, and

each subsequent entry’s score is reduced by 1. The match percentage is calculated

for each entry in the n-best list and multiplied by the entry’s base score. The score is

scaled so that it is between 0 and 1000, to match the scoring metric used for sketching.

This process is repeated for each expected speech utterance, and the best overall score

is kept. Two examples of n-best lists and the score calculations are shown in Table 5.1

and Table 5.2.

5.2 Sketch Recognition

Sketch data is most effectively captured in C#, by using the Microsoft Tablet PC API

to get high sample rates and pressure data. Each stroke the user draws is captured as

a series of points, and each point contains the x and y coordinates in himetric units,
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Recognized Speech Base Score Match Per-
centage

Scaled
Score

it moves in this direction 10 1.0 1000
it moves this direction 9 0.8 720
it moves and this direction 8 0.7 560
it moved this direction 7 0.5 350
it moves on this direction 6 0.7 420
it moves its direction 5 0.5 250
it moved its direction 4 0.2 80
it moves his direction 3 0.5 150
it moved his direction 2 0.2 40
it owns this direction 1 0.5 50

Table 5.1: The n-best list from the speech recognizer matched against the expected
phrase “It moves in this direction.”

Recognized Speech Base Score Match Per-
centage

Scaled Score

No 10 1.0 1000
no 9 1.0 900
know 8 0.0 0
noe 7 0.0 0
new 6 0.0 0
noh 5 0.0 0
knew 4 0.0 0
nau 3 0.0 0
dough 2 0.0 0
doe 1 0.0 0

Table 5.2: The n-best list from the speech recognizer matched against the expected
phrase “No.”
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the timestamp, and the pressure.

Sketch recognition is handled by a low-level stroke recognizer developed by our

group [51] that classifies the stroke into one of several primitive shapes (e.g., lines, arcs,

ellipses, and polylines). Midos adds a higher level classification of these primitives,

allowing it to recognize strokes as either a location, path, or selection. A location

indicates a point on an object or a new position for an object. A path shows how

an object moves (e.g., a line that indicates a distance or direction, or an arc that

indicates a direction or distance of rotation). A selection identifies a particular object

(by circling, marking, or filling in an object). Figure 5-1 shows an example of each

type of stroke.

(a) Location (b) Location (new position) (c) Path (d) Selection

Figure 5-1: Illustration of the three different types of input strokes.

The scoring metric used for sketching is similar to the scoring metric for speech.

Like the speech recognizer, the sketch recognizer returns an n-best list of interpreta-

tions, scored in the range (0-1000). Midos combines these scores with the sketching

it is expecting based on the question it asked. Each expected stroke has a type of

stroke and optionally a target shape. If the drawn stroke matches one of the expected

strokes, it keeps its base score. If it doesn’t match it gets a score of zero. If it matches

some of the expected shapes, it gets a score equivalent to the base score times the

percentage of shapes that it matched. The expected strokes are listed in Appendix A.

5.3 Combining Inputs

The user’s speech and sketching potentially overlap temporally and in content. The

first step in figuring out what the user intended is to find corresponding speech and

sketching. The user studies we conducted provide two key insights about segmen-
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tation: concurrent speech and sketching are typically about the same topic (cross-

modality coherence) and a pause indicates a new topic. The system uses these heuris-

tics to group concurrent speech and sketching together; concurrent speech and sketch-

ing are assumed to be about the same topic. Furthermore, no input is processed while

there is ongoing speech or sketching. Midos waits until there is a pause of 300 mil-

liseconds in both input modalities before it attempts to process the user’s input.

After the system has grouped some speech and sketching, it must determine the

user’s intention. This task is guided by two assumptions. First, we assume the user is

answering a question posed by the system. Second, as mentioned above, the system

assumes the answer will fall within a known variety of possibilities for each modality.

Although the user’s answer does not have to exactly match any expected answer,

the expected answers help the system interpret the user’s response and determine

whether it is valid. The user’s multimodal input is processed in seven steps:

1. Ask the user a question.

2. Group user’s speech and sketching as described above.

3. Match and score the user’s speech against the expected speech.

4. Match and score the user’s sketching against the expected sketching.

5. Maximize the sum of speech and sketching scores.

6. Evaluate the best scoring combination, checking for missing or conflicting input.

(a) If the combination is successful, go to the next step.

(b) If the combination is unsuccessful, ask the user a follow-up question with

more guidance about the expected answer. Return to the first step.

7. Generate statements based on the new information and update current state

and the physics appropriately.

We illustrate these steps with a simple example of a block connected to a spring,

Figure 5-2.
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First, the system runs the physics simulator and determines that the situation is

ambiguous (is the spring in tension or compressed?). Next, it generates an appropriate

question for the user: “Will this spring expand or contract?” (Figure 5-3). The

generation of the speech and sketching output is discussed in the Chapter 6.

Figure 5-2: The initial configuration of the block and the spring.

Figure 5-3: The system asks the user which direction the spring is going to move in:
“Will this spring expand or contract?”

The system knows to expect several possible responses from the user: The user

might say “it expands,” “the spring gets longer,” or she might simply draw a line to

indicate the direction in which the spring moves. Alternatively, she might combine

speech and sketching and say “it moves in this direction” while drawing a stroke. The
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response from the user could contain only speech, only sketching, or a combination

of both. The system anticipates and understands any of these possibilities.

After scoring both the speech and sketching input, the system next evaluates

cross-modal consistency. For example, is the line indicating a direction for the spring

consistent with the speech utterance? Table 5.3 visually summarizes possible results

from the consistency check; the possibilities are explored in more depth below.

User Sketching User Speech Consistency Check Result

“It moves in this direction” Insufficient

“It contracts” Conflict

“It expands” Success

Table 5.3: A visually summary of possible consistency check results.

Figure 5-4 shows an example in which the user drew a stroke indicating the spring

compresses, while saying “it expands.” The system noticed this inconsistency and

asked a follow-up question to resolve the inconsistency. As shown in Figure 5-5,

Midos said “I could not understand your speech and sketching. Does the spring

expand, contract, or is it at rest?”

Replies may also be insufficient or at odds with what the simulator knows about

the physics of the situation. An insufficient reply arises if, for example, the user says

“it moves in this direction” without drawing a stroke (Figure 5-5). Without a stroke

the speech cannot be translated into a direction.

A reply that is consistent across modalities is illustrated in Figure 5-6.

The user’s input may also make sense on the surface, but the underlying physics

is impossible or at least impossible for our physics simulator to compute. This can

occur, for example, if the system asks the user where a collision point is located on

a body and the user indicates a point that cannot be the first collision point, as

illustrated in Figure 5-7.

The result of the cross-modality consistency checking is used to update the state
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Figure 5-4: The user provides a conflicting answer by drawing the shown stroke
and saying “It expands.” Note that the UI displays the best result from the speech
recognizer, in this case it displays “expands.”

Figure 5-5: The user provides an insufficient answer to the computer’s question. The
computer asked: “I could not understand your speech and sketching. Does the spring
expand, contract, or is it at rest?” This time the user answered, “It moves in this
direction,” but did not draw a new stroke. The blue stroke was drawn in response to
the previous question (Figure 5-4).
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Figure 5-6: The user provides an acceptable answer by saying “It expands.” The
system then updates the velocity of the body accordingly and removes the stroke
that was used in the question.

Figure 5-7: The two bodies pictured here are moving towards each other. Midos
asks the user where the contact occurs on the block highlighted in orange. With
the purple pen, the user indicates the bottom face which is a physically impossible
location for the collision.
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of the system, in this case setting the force exerted by the spring on the block in

the appropriate direction. In other cases, properties of the stroke itself are used to

compute the update, for example, the angle of a stroke may be used to update the

velocity direction of a body. Each information request is responsible for processing

the set of corresponding speech and sketching input. Chapter 7 describes information

requests in more detail.

5.3.1 Matching the Input

The examples above illustrated the different possible outcomes for combinations of

speech and sketching input. The expected response is different for each information

request. The system handles the general case by comparing the inputs it receives with

a table of possibilities. Table 5.3 provides a visual summary of matching process.

Each line of the table indicates which of the expected strokes and speech must

be present, not present, or have a specific value. The specific values are calculated

based on the speech or the sketching in the user’s input. These requirements can

also be marked as optional or required. Each row in the table indicates the outcome

of matching that row: success, insufficient, conflict, or other. For stroke input, the

information request can specify a calculation, the result of which can be used in the

table.

The table for the question about whether a spring expands, contracts, or stays

stationary is shown in Table 5.4. For this question, the value computed for the stroke

input corresponds with whether the stroke indicated an expanding (positive value),

contracting (negative value), or stationary (0.0 value) state for the spring.

If the result of matching the user’s input is not “success,” the system asks a follow-

up question that indicates explicitly the type of answer it is expecting. If possible, it

tries to specify exactly what was missing from the answer. Figure 5-6, for example,

shows the computer’s response when the user’s answer is missing some important

piece of information: “I was expecting more input. Does the spring expand, contract,

or is it at rest?” If on the other hand the match is successful, a statement or set of

statements are created that capture the information. The physics simulator then uses
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these statements when it calculates how to update the simulation. In our example,

the force of the spring would be updated so that the spring expands.

Expands
Speech

Contracts
Speech

Stationary
Speech

Multimodal
Speech

Direction
Stroke

Result

Not Present Not Present Not Present Present Not Present Insufficient
Present Present Optional Optional Optional Conflict
Optional Present Present Optional Optional Conflict
Present Optional Present Optional Optional Conflict
Optional Optional Present Present Optional Conflict
Not Present Present Optional Optional Positive

Value
Conflict

Not Present Present Optional Optional 0.0 Conflict
Present Not Present Optional Optional Negative

Value
Conflict

Present Not Present Optional Optional 0.0 Conflict
Not Present Not Present Present Optional Positive

Value
Conflict

Not Present Not Present Present Optional Negative
Value

Conflict

Not Present Present Not Present Optional Optional
Negative
Value

Success

Present Not Present Not Present Optional Optional
Positive
Value

Success

Not Present Not Present Present Optional Optional 0.0 Success
Not Present Not Present Not Present Optional Positive

Value
Success

Not Present Not Present Not Present Optional Negative
Value

Success

Table 5.4: The full table of expected inputs for a question about the direction a spring
moves. Entries not marked “optional” are required.

The combination of the low-level recognizers, our matching and scoring functions,

and our consistency checking table allow the system to determine the user’s intended

behavior.

5.3.2 Disfluencies

Our research has shown that disfluencies play an important role. For example, dis-

fluencies in the speech input seem to indicate that the user is still thinking about
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the same topic. Midos handles disfluencies the same way it handles other speech

input; they are recognized as incoming speech and cause the system to wait before

processing of the user’s input. The delay gives the user more time to finish her speech

and sketching about the current topic, thus achieving the desired result. Ideas for

more detailed handling of disfluencies are discussed in Chapter 10.
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Chapter 6

Multimodal Output Synthesis

Output synthesis can be thought of in two parts: synthesizing the individual outputs

and joining the parts together. The individual modalities can be thought of as in-

struments in an orchestra score. The score is not complete without synchronizing the

different instruments, or in this case synchronizing the different output modalities.

We created a simple language to easily write a multimodal score.

As one of the goals of Midos is to create a symmetric interaction, each of

the computer-generated modalities should replicate the equivalent user modality as

closely as possible. Additionally, users frequently combine speech and sketching when

responding to questions about designs. The computer should replicate this behavior

too.

In Chapter 5 we discussed how the input to Midos is handled. This chapter

explores the generation of both output modalities and the process Midos uses to

combine them to form the complete output.

6.1 Sketch Synthesis

In the same way that users identify objects in a sketch by highlighting, circling, or

otherwise marking the object being discussed (see Chapter 3), computer-generated

output also needs to graphically identify objects in the sketch. The sketch synthesizer

used to identify objects takes several different approaches, each of which mirrors the
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user’s methods of identifying areas: circling it, drawing a stroke through it, or filling

it in (see Figure 6-1).

(a) Circling (b) Stroke (c) Filling in

Figure 6-1: Three methods of identifying areas.

Identification strokes like these are straightforward to generate. The circling stroke

is created by constructing an ellipse that encloses the bounding box of the shape. A

single stroke through a shape is generated by making a randomly oriented line through

the center of the bounding box of the shape and using the longest portion of that

line that is contained within the shape. Finally, filling in a shape is accomplished by

starting at the top-left corner of the shape and drawing connected line segments at

alternating angles through the shape.

The remainder of this section discusses the more complex aspects of synthesizing

the sketched portion of the output, including selecting an identification method, ad-

justing the strokes so they appear natural, and generating output with the appropriate

properties.

6.1.1 Selecting an Identification Method

Midos takes several factors into account when deciding which identification method

to use: applicability to the situation, system preference, and drawing time. The

drawing time of the strokes for the different identification methods is particularly im-

portant. Preferably, the strokes should be drawn within the amount of time that the

generated utterance takes to speak so that pauses in the utterance are not required.

The speech synthesizer produces more natural sounding speech when it synthesizes
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speech in longer phrases. We have discussed how users closely coordinate their speech

and sketching input and pause the appropriate modality to keep the modalities syn-

chronized; the synthesized outputs should do the same.

By default, the different identification techniques are ordered in decreasing preci-

sion: filling in a shape, drawing a single stroke through a shape, and circling a shape.

Filling in a shape is the most precise method, and circling a shape is the least precise.

The full set of techniques is not applicable in every situation. In such cases, only the

applicable selection techniques are used. Some shapes, like springs, cannot be filled

in or marked by a single stroke, so are always circled. Computer-generated questions

may also refer to a region of space that does not have an underlying shape or object,

for example, the region where a collision will occur. These areas are also circled. It

is always possible for the system to generate a stroke that surrounds an object or

area; therefore, circling serves as the default method. Although circling is a good

default, it is imprecise; the size of the enclosing ellipse often vastly exceeds the size

of the shape or region. The ellipse is generated using the bounding box of a region

and does not closely track the border of a region. This potentially causes the ellipse

to enclose areas that are not part of the target region. Each requested identification

stroke can specify list of preferred techniques. For each technique, an appropriate

stroke is generated, and then Midos determines which stroke should be used.

Midos uses two factors to choose the identification stroke to use: the position in

the preference list, and the amount of time (if any) that drawing the stroke exceeds

the duration of the speech associated with it. The penalty for using a particular

stroke is calculated by this formula:

Penalty = Max(0, StrokeTIME − SpeechTIME) + 250(P − 1)

where StrokeTIME is the time in milliseconds that the stroke takes to draw,

SpeechTIME is the time in milliseconds that the speech takes to say, and P is the

stroke’s (1-based) position in preference list. If the stroke is not in the preference

list, P is set to 5. The determination of StrokeTIME is discussed below. The weight
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for the preference component of the formula was chosen by examining the Penalty

value for several examples and comparing the value to the desired behavior. The

identification stroke with the smallest penalty is used to identify the shape or region.

6.1.2 Timing and Adjusting Points

As previously discussed, a goal for the sketch synthesizer is that its output should

appear plausibly humanly generated, as opposed to obviously machine generated.

One aspect of the effort is to make sure that the computer strokes are drawn at the

same drawing speed as user strokes and that the strokes appear in the same way

as user strokes – point-by-point. Each of the identification strokes has a range of

pen speeds that attempt to approximate the pen speed a person would use to draw

the stroke. Our qualitative observations from the dialogue user study indicated that

people draw fill strokes the fastest, followed by the circling stroke. The single stroke

line was the slowest stroke users drew. The range of speeds allows Midos some

flexibility in fitting the stroke into the duration of the associated speech.

Additionally, the path for each stroke is adjusted to introduce variations and errors

to more closely match human-drawn strokes. This is a two-step process. First, the

stroke is resampled so that the distance between points does not exceed a threshold.

Some strokes initially have very sparse points; resampling allows the system to in-

troduce variations while preserving the overall shape of the path. Second, the points

are shifted by a random amount so that the lines are not perfectly straight and the

curves are not perfectly round. Figure 6-2 illustrates the process of drawing a stroke

and the variation that is introduced.

6.1.3 Color Selection

The user studies revealed that pen and highlighter color consistency is important.

Midos picks the pen and highlighter color using the following criteria:

• Use the same color for the entire question.

• If the question type is the same as the last question asked, use the same color.
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Figure 6-2: A body in the process of being circled.

• If the question type is not the same as the last question, use a different color.

• If a pen and highlighter are used in the same question, use contrasting ink

colors.

6.1.4 Pie Wedges

In addition to strokes, the computer can also draw pie wedges to indicate a (some-

times) small range of possible angles to the user, as shown in Figure 6-3. For example,

after a collision between two bodies, we need to know what direction the bodies move

in (due to the qualitative nature of the physics simulator this cannot be calculated

exactly). Specifying a range of angles by using a stroke proved to be difficult. Pie-

shaped areas clearly indicate the allowable range of angles and seemed to be the best

solution, although this aspect of the interaction is not symmetric because the user

cannot draw pie wedges. Pie wedges appear at specified times like the strokes, but

appear all at once instead of being drawn slowly. Fifty milliseconds is used as the

duration of the pie wedges for the calculations that are used to align the speech and

sketching.
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Figure 6-3: A pie wedge.

6.1.5 Pen Image

Some of the identification strokes happen in a short amount of time. In order to draw

the user’s attention to a particular computer-generated stroke, an image of a pen is

displayed, follows the stroke as the stroke is being drawn, and stays on the screen

for up to 2.5 seconds after the stroke is complete, as shown in Figure 6-4. The pen

image is drawn at the location of the last point, or at the center of the pie wedges.

In addition to drawing visual attention to the stroke, the image also alludes to the

idea that the computer is drawing these strokes in the same manner that the user is

drawing.

Figure 6-4: The pen drawing a stroke through a shape.

The pen stays visible for 2.5 seconds at the conclusion of drawing or until the

pen is displayed at a new location with a new stroke. Future work (see Chapter 10)

includes more detailed drawing considerations to more accurately and closely reflect

human drawing styles and properties.
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6.1.6 Motion Indicators

Some of the questions Midos asks are about potential events: possible collisions, mo-

tion distances, or rotation amounts. Midos indicates potential events using straight

and curved arrows to show motion paths of objects as shown in Figure 6-5. These

arrows serve as a primitive form of animation that enable Midos to convey the ex-

pected path of an object to the user. For example, the arrows allow Midos to show

the user how the system anticipates bodies will collide or to show the predicted tra-

jectory or rotation of a body. The arrow strokes, like the identification stokes, have a

range of possible drawing speeds. The arrows are rendered almost as quickly as the

fill strokes so that they do not delay the associated speech utterance.

Figure 6-5: Arrows indicating a direction and rotations.

6.1.7 Technical Considerations

Although the C# Tablet PC API provides realistic and detailed rendered strokes in

response to user pen input, the ability to programmatically generate rendered strokes

on a point-by-point basis does not exist. Extensive bookkeeping code compensates for

this by generating a series of strokes of increasing length while removing the previous

shorter stroke. This allows the strokes to be displayed as if the computer were drawing

them point-by-point, like the user draws. The display uses multiple layers of ink to

support simultaneous drawing by the user and the computer. This allows the user to

start drawing while the computer is drawing strokes.

The output that Midos creates is sent to the user interface all at once. It is

then added to a set of time-release queues that add the points to the strokes (or send
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the speech to the synthesizer) at the appropriate time. This allows the system to

create the effect of the computer actually drawing the strokes, coordinated with the

generated speech.

C# records the pen input points in himetric units with millisecond timestamps.

Himetric units are used when the files are saved, but pixel coordinates are used by

the physics simulator for its calculations. Additionally, the timestamps on the points

must be adjusted to account for inaccurate timestamps. The timestamps that are

originally assigned contain some points with duplicate times and unevenly spaced

timestamps. The corrections are made as the data is received in C#.

6.2 Speech Synthesis

The synthesized speech is generated by an off-the-shelf synthesizer: AT&T Natural

Voices. Midos sends the synthesizer a sentence or phrase at the desired output time

and the synthesizer generates the corresponding realistic speech. Although generating

the outgoing speech is easier than generating the outgoing sketching, more work is

involved in timing the speech output correctly.

Ideally, the synthesizer would report its progress in the utterance, which would

enable us to coordinate the speech and sketching output. However, this recognizer

provides limited feedback: indicating only whether it is actively producing speech.

To circumvent this issue, all expected output phrases are timed in an initialization

step. Then the timing data is used to approximate the progress of the synthesizer.

Details of the coordination with the sketching are discussed below.

6.3 Synchronizing Outputs

The previous sections have discussed the synthesis of the individual output modalities.

Any nontrivial use of simultaneous sketching and speech requires synchronizing the

two modalities. For example, the use of two deictic gestures in the same sentence

(“Does this block hit this block?”) is impossible without close coordination of the
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two modalities.

The coordination of the different modalities is based on the observations from the

user studies. In particular, the study participants would pause their speech or sketch-

ing to keep the two modalities synchronized, helping to ensure that the two modalities

were always referring to the same topic and objects (cross-modality coherence).

6.3.1 Synchronization Language

Producing cross-modality coherence in Midos is difficult because the system has

numerous questions it can ask, each of which can be applied to a very large number

of physical situations. As a result we face a non-trivial problem in determining how

much time is needed to draw any required strokes. The time depends on both the

length of the stroke and the stroke speed, which itself depends on the type of the stroke

and the accompanying speech. The variations in physical situation also mean that

the timing constraints between the speech and sketching will vary between different

instances of the same question. In order to specify how the speech and sketching

should be coordinated in a manner independent of these variations, Midos uses a

small language that expresses the chronological relationship between the system’s

speech and pen strokes. The small set of features in the language provide a rich set

of possible outputs, while limiting the effort required to generate them.

The main capabilities of the language are:

• drawing one stroke with an accompanying phrase,

• drawing zero or more strokes with an accompanying phrase,

• pausing both modalities for a short or long period of time,

• deleting a single stroke or multiple strokes that have been displayed,

• automatically computing the timing of the modalities,

• automatically adjusting the grammatical number of the words based on the

number of assigned strokes.
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The syntax of the language is shown in Table 6.1. Parentheses and braces are used

to indicate a phrase that should be concurrent with a stroke or a group of strokes,

respectively. Also shown is the syntax for pauses and deletion of strokes. The short

pause is 700 milliseconds, the long pause is 3 seconds. Several examples are shown in

Section 6.3.4.

Function Annotation
Associating a word or group of words with one stroke ( )
Associating a word or group of words with zero or more strokes { }
Short pause in the output <short pause>
Long pause in the output <long pause>
Clearing all the computer-generated strokes <clear strokes>
Clearing the last computer-generated stroke <clear stroke>

Table 6.1: The timing annotations for the speech and sketching output.

6.3.2 Pointing

Midos can “point” at objects by combining identification strokes and pauses. The

identification strokes allow Midos to point out a shape or several shapes. A subse-

quent pause inserts a delay that allows the user to absorb the output.

The “pointing” can be temporary by using the deletion operations after the pause

to remove the strokes. This leaves the display in a state where the same objects can

be circled a second time during the same question. Clearing the initial strokes allows

the system to focus the question on one or more shapes. An example of pointing is

illustrated in Section 6.3.4.

6.3.3 Automatic Timing

Generating the timing for the combined output is accomplished using the following

steps:

1. Break the speech string into fragments based on the braces and parentheses.

2. Calculate the number of strokes that should be assigned to each fragment.
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3. Check to make sure there are enough strokes.

4. Assign the strokes to each fragment.

5. Adjust grammatical number of each fragment.

6. Determine the time needed for the speech in each fragment.

7. Determine the time needed for each stroke.

8. Determine the timing for each fragment, merging fragments where possible.

9. Determine the timing for the entire question.

For the purposes of these steps, pie wedges are counted as strokes. The steps are

described in more detail below.

Allocating Strokes to Fragments

The first step is to break the speech string into fragments so that the strokes can

be assigned to each fragment. The annotated speech string is broken into fragments,

using the braces and parentheses as guides. Each fragment has either zero, one, or

many (zero or more) strokes associated with it. The speech string is accompanied by

lists of strokes, pie wedges, and deletions to assign to the fragments.

The strokes (and pie wedges) are assigned to the fragments in an iterative process.

First, each fragment that requested exactly one stroke is assigned one stroke. The

remaining strokes are assigned to the fragments that requested multiple strokes so

that the strokes are as evenly distributed as possible. For example, each fragment is

assigned one stroke before any fragment is assigned two strokes.

The strokes and speech are specified separately, so Midos performs two sanity

checks on the fragments. It ensures that there are enough strokes to satisfy the total

number of assigned strokes and that there are no unassigned strokes remaining.

A similar process is followed for the deletion annotations. Deletion strokes are

assigned (to <clear stroke> and <clear strokes> requests) until there are no more

deletion strokes available. A sanity check is made to ensure that the number of
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deletion strokes requested by the language is not greater than the number of available

deletion strokes and that there are no extra deletion strokes.

At this point, the number of strokes (and deletions) for each fragment is deter-

mined. The actual strokes (and deletions) then must be assigned to each fragment.

The strokes are assigned based on their position in the list of strokes, with pie wedges

added to the end of the list. Likewise, deletions are assigned based on their position

in the deletion list. None of the current questions require mixing strokes with pie

wedges in the same question. If a situation arose that called for mixing these types,

the system could be modified to assign strokes and pie wedges to fragments from a

single, merged list.

Automatic Grammatical Number Adjustment

Now that the strokes are assigned to the fragments, the grammatical number agree-

ment (singular vs. plural) of the fragments can be updated. The grammatical number

of the fragment actually affects a larger section of speech, because the verb tenses

also need to be adjusted accordingly and may not be contained in the fragment with

the stroke(s). Thus, if any fragment is plural, the entire set of fragments under con-

sideration is changed to plural form. For example, the sentence “{This shape} causes

a clockwise rotation.” has two fragments, “{This shape}” and “causes a clockwise

rotation.” If there are multiple shapes that cause a clockwise rotation, there will be

multiple strokes associated with the fragment “this shape.” The first fragment must

be updated to “{These shapes},” and the second fragment must be updated to “cause

a clockwise rotation.” In the future, a more careful analysis of which words should be

updated will be needed, but this admittedly simplistic analysis was sufficient for the

questions that Midos currently asks. This limitation can be circumvented by align-

ing smaller groups of speech and sketching at a time (parts of a sentence or question).

Midos will consider each set of speech and sketching separately so the grammatical

number of one set of inputs will not affect another set.
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Timing Computation

After the grammatical number is used to adjust the form of the words, the exact

timing for the speech phrase can be calculated. This step is important because there

can be variations allowed in the timing of the sketching that depend on the speech

timing being determined. Once the words in the speech are set, the time for the

phrase can be looked up in the list of precalculated speech-timing information. This

time is then used to determine how quickly the strokes will be drawn, as described in

Section 6.1.

With the timing determined for the speech and the sketching, the overall timing

for the fragment can be calculated. If the sketching can occur entirely within the

duration of the speech, the fragment can be combined with the subsequent fragment.

If not, then the subsequent fragment must be delayed until the sketching for the

current fragment has concluded. If the sketching part of the fragment is shorter than

the associated speech, the sketching is centered in the fragment.

After the timing for each fragment is determined, a similar calculation is used to

compute the timing for the entire question. The speech sounds natural and flows

smoothly if the synthesizer speaks an entire sentence at once. As many fragments as

possible are merged together so that the speech that is sent to the speech synthesizer

is in the largest units possible. The fragments of the question are timed relative to the

start time of the entire question. When the system is ready to ask the question, the

offsets allow the system to compute the absolute time for each question component

by simply adding the current time to the offsets.

Time Estimation Accuracy for Phrases

The estimates for the length of time that the speech synthesizer will take to speak a

particular phrase are not exact. Is it better if the time is over or under estimated?

If this time is overestimated, the system might mistakenly believe that an associated

stroke or strokes would be finished before the end of the speech phrase. If the speech is

shorter than expected, these stokes would overlap with the next speech utterance. An
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underestimate of the speech would instead cause the start of the next speech phrase

to be delayed until the strokes were completely drawn. Although underestimating

may cause the calculated start time of the next utterance to be too early, the system

can only speak one utterance at a time, so this is not a problem.

6.3.4 Examples

The questions the system asks range from simple: “Do {these two bodies} collide?” to

complex: “(These two) (bodies) collide (here.) <long pause> <clear strokes> Where

on (this) body does the contact occur?” Both of those utterances are accompanied by

strokes that identify the bodies in question, and, for the second question, the region

where the collision occurs. The second example is illustrated in Figure 6-6.

Figure 6-6: An example of the generated output for the question “(These two) (bod-
ies) collide (here.) <long pause> <clear strokes> Where on (this) body does the
contact occur?” Notice Midos pointing to bodies using identification strokes and
deletion operations.
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6.4 Interruption and Input Acknowledgment

Midos handles two other pieces of dialogue control. First, if the user starts to draw

or talk, the system will halt its output. This allows the user to start to answer a

question before the system has finished asking it. This proves to be especially useful

with lengthy questions, some of which can take more than 15 seconds to finish.

The second piece of dialogue control is input acknowledgment. The system will

acknowledge the user’s input if the score for the user’s input is above a threshold.

This acknowledgment takes the form of a brief speech utterance to let the user know

that the system is processing their input. The acknowledgment phrases include: “Got

it,” “I got it,” “Uh huh,” “Okay,” and “Thanks.”
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Chapter 7

MIDOS: Core Components

Several core components of Midos tie together the input (Chapter 5) and output

(Chapter 6). These core components include the user interface, the physics simulator,

and the information request processing.

Figure 7-1 shows an overview of the components and their connections. The qual-

itative physics simulator analyzes the elements in the sketch, updates properties, and

generates trajectories for the bodies. The information request generator analyzes

the results of the simulation and generates a list of needed information. The topics

of these requests include collisions, missing information, and under-specified infor-

mation. The dialogue manager then selects the question to ask and generates the

appropriate speech and sketching. After asking the question (Chapter 6) and receiv-

ing the result (Chapter 5), the dialogue manager makes the appropriate updates to

the physical situation and the physics simulator is run again.

7.1 User Interface

Midos users interact with the system via the interface shown in Figure 7-2. The

interface has a row of buttons across the top that allow the user to change between

a pen and a highlighter of various colors, motivated by the user studies (Chapter 2

and Chapter 3) that revealed the importance of allowing the users to switch the pen

style (pen / highlighter) and the ink color. The bottom of the screen shows the user’s
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Figure 7-1: An overview of the Midos components and how they are connected.

recognized speech and the computer’s generated speech. This visual version of the

question complements the auditory version and allows the user to review the question

Midos asked. The user can scroll through the previous questions and replies by using

the arrow buttons at the bottom left area of the screen.

The base sketch that contains the various mechanical components is created in a

separate part of the program. An example base sketch is shown in Figure 7-3. Users

can select different shapes and add them to the diagram by using the mouse. After

the base sketch is created, Midos will ask questions and simulate the device. Starting

with a neat base sketch allowed us to focus on the dialogue aspects of the interface.

An area of future work for Midos is to allow the user to create the base sketch using

freehand drawing. Figure 7-4 illustrates the difference between the neat base sketch

and a freehand version.

7.1.1 Technical Details

The user interface allows the user to save the current state to a XML-formatted file.

The file contains the shapes in the sketch, the strokes drawn by the user and the

computer, and a text form of the user’s and the computer’s speech. The file saves

the history of the entire sketch, and the interaction can be replayed using the saved

data. The file format is an extension of the ETCHASketches format [44] that saves

the speech data in addition to the sketching data. The user can open or save these
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Figure 7-2: The user interface of Midos.

Figure 7-3: A base sketch for a switch flipper.
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(a) Neat base sketch (b) Freehand sketch

Figure 7-4: A neat and freehand version of part of a base sketch.

files at any time by using the menu in the user interface.

Although the user interface is written in C#, the rest of the core components of

the system are written in Java. The connection between the two is made using several

socket connections. The incoming user speech and sketching are captured in C# and

then handled by Java. The output consisting of the computer speech and sketching

is sent back to be displayed or spoken in C#.

7.2 Qualitative Physics Simulator

The physics simulator is a major component of Midos. It acts as a kind of inference

engine taking the current state of the world and trying to predict the next state. The

simulator serves two purposes: updating the device to the next state and determining

the needed information to get to the next state. The physics simulator itself has two

important properties: it is qualitative and modest.

As a qualitative simulator, it uses only directions of velocities and accelerations

not their magnitudes. This is still useful as the system is designed to allow users to

describe early-stage designs, a stage when requiring them to enter precise velocities,

masses, and properties like elasticity and friction coefficients would detract from this

goal.

The simulator is modest in the sense that we have made a number of simplifying

assumptions. We do not claim that it can handle every situation nor that it is an

accurate representation of real world physics. We do claim that it can generate a
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series of sensible questions and update its model of the world appropriately.

Our simplifying assumptions include handling rotations and translations of bodies,

but not simultaneous translation and rotation, or friction. Our goal was a simulator

sufficient to identify physical ambiguities and to generate sensible questions, rather

than one capable of making extensive and subtle inferences. The simulator is sufficient

to allow us to focus on the interaction that is created with the user. The simulator can

generate a set of reasonably complex questions that engage the user in a discussion

about the device. This allows us to focus on the dialogue and how the questions are

asked and answered. The evaluation of Midos (Chapter 8) showed that the simulator

is sufficient to create an engaging dialogue with the user, although some expert users

requested that it handle more complex physics.

The simulator runs in real time and attempts to update the device to the next

state. If the next state cannot be determined unambiguously, the system creates a

set of possible questions to ask the user, in the form of information requests. The

requests are turned into questions; the answers provide additional data that updates

the system’s model and allows it to continue simulating the device. As the device

is updated, new information requests are generated based on the new state using a

variety of techniques described below.

7.2.1 Supported Shapes

The physics simulator handles polygons of various forms, from triangles to quadrilat-

erals to arbitrary polygons, as well as ellipses (which are approximated as polygons).

The polygons can be anchored, free moving, or have a pivot. The system supports

pulley systems, springs, and weights connected by rods. A weight is created by

attaching a body to a rotating body with a line that only has one segment. The

system recognizes this as a rod and weight. The shapes recognized by the system are

displayed in Figure 7-5.

113



(a) Unanchored
triangle

(b) Unanchored
rectangle

(c) Unan-
chored poly-
gon

(d) An-
chored
rectangle

(e) Pivoted rect-
angle

(f) A pulley sys-
tem

(g) A spring
connected to a
body

(h) A rotating
body with
two weights
connected by
rods

Figure 7-5: The various supported shapes.

7.2.2 Scope of the Simulator

The physics simulator makes simplifications that make the physics tractable while

still allowing Midos to generate sensible questions for a conversation with the user.

Some simplifications are made by not handling various aspects of real-world

physics. The simulator does not handle simultaneous rotation and translation of

objects. It does not account for friction and assumes that ropes never have any slack.

Although the user can draw concave polygons and the physics simulator makes an

attempt to handle these shapes, the results it returns are not always accurate. The

simulator, however, does account for gravity.

One shortcoming of the physics simulator that was evident on a few occasions

during the user study is that it assumes all collisions are perfectly elastic, i.e., a

collision will transfer all velocity from one shape to the other. This does not allow

shapes to move together. For example, if a body collides with another body, the

initial body will transfer all of its velocity and stop. Sometimes the desired behavior

is to have both bodies move together after the collision.

The physics simulator handles polygons of various forms, as stated previously.

Weights, rods, and ropes cannot collide with other shapes as they are essentially 2

dimensional shapes in a 2.5 dimensional world. Weights and rods have the additional
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property that the weight and rod always hang vertically from whatever they are

attached to. When the simulator computes rotational collisions, it uses a finite set of

angles, allowing it to try all possible rotations to find collisions.

The system’s model of springs is fairly simplistic. A spring has a maximum length

to which it can stretch, a minimum length to which it can compress, and a current

motion direction (or it can be stopped).

These simplifying assumptions are not always beneficial. Conflicting calculations

between approximations and exact calculations can sometimes cause the physics sim-

ulator to behave erroneously. For example, a fixed set of angles are used to approx-

imate rotational collisions, but an exact distance is used to determine if two shapes

are touching. The rotation approximation can indicate that a shape has rotated as

far as it can without overlapping with another shape, although the distance between

the two shapes is still too large for the shapes to be considered as touching. The

differing calculations can prevent the simulator from realizing that the shapes have

collided. Chapter 10 discusses ideas for how the simulator can be improved.

7.2.3 Calculation Techniques

The physics simulator approaches the physics calculations from several directions.

We discuss each of the techniques below.

Base Constraints

The simulator starts by applying some basic constraints to all of the shapes, including

setting the velocity of an anchored body to zero, ensuring that pivoted shapes have

only rotational motion, and adding the force of gravity to unanchored shapes. Gravity

is applied by giving effected shapes a downward acceleration.

Additionally, the simulator creates statements that reflect the current properties of

the device. This includes statements about shapes that are anchored or are attached

to a spring, rope, or weight. These statements are used to find shapes with specific

properties and generate the appropriate information requests. If a spring or rope is
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at the limit of its motion – it is stretched or compressed as far as it can go or at the

end of its rope – a statement is generated to reflect this. This statement is used in

the degrees of freedom calculation.

Degrees of Freedom

Another technique is to examine the degrees of freedom that each shape has. The

degrees of freedom are a way to represent in which directions a shape can translate

or rotate. We calculate two sets of degrees of freedom for each shape, one for transla-

tional motion and one for rotational motion. One of the simplifications in the physics

simulator is that shapes can have only translational or rotational motion, but not

both. All of the shapes, however, affect the calculations of the degrees of freedom for

both types of motion. We discuss how the degrees of freedom calculations are used

and then describe the calculations themselves.

The degrees of freedom are used to calculate how far shapes can move along a

surface, when a shape might change direction, what direction or rotations are permis-

sible for a shape, and how the velocity of a shape is transferred when it is involved

in a collision, among other computations.

The system calculates the degrees of freedom as it updates the position of shapes.

When the degrees of freedom change, a direction change is possible and an information

request is generated to determine the new direction of the shape. This can occur when

a shape reaches the end of a body or when a shape moves away from a surface with

which it was in contact. For example, if a shape is resting on a surface, its degrees of

freedom are restricted in the downward direction, and it cannot move down. If the

shape is then moved to a position above this surface, its degrees of freedom are now

unrestricted, and it can move in any direction. If the shape is under the influence of

gravity, its motion is now uncertain because it could either continue to move up or

it could move down. Similarly, if a body slides off the end of a surface, its degrees of

freedom will change because it is now free to move in a downward direction.

For rotations, the degrees of freedom are used to determine how far a shape can

rotate. If there is an anchored body in the path of the rotating shape, the rotating

116



shape cannot rotate past that body.

When a collision occurs, the velocity of the colliding body is transferred to the

body with which it collides. Here, the degrees of freedom are used to calculate the

new velocities of the bodies. The collision direction and the degrees of freedom of

the body that is hit are taken into account. It is possible that the hit body cannot

move in the direction that the collision pushes. In this case the colliding body might

bounce or stop. An information request to determine what will happen would be

generated by the system.

If the movement of a body will change the degrees of freedom – for example,

separating from another body or moving past the edge of another body – the body

will be updated a distance of 50 himetric units (as long as this is physically possible).

This provides some visual separation so that the user knows that the shape has been

moved.

The translational degrees of freedom are calculated as follows:

1. Assign degrees of freedom to easily calculated shapes. This includes anchored

shapes that cannot move and shapes that are not touching anything that can

move in any direction. Pivoted shapes are set to have no restrictions on their

translational degrees of freedom, a temporary setting for the calculations.

2. Shapes that are attached to a spring or pulley that cannot move any further in

a particular direction are set to have the appropriate degrees of freedom.

3. Groups of touching shapes are found.

4. The degrees of freedom are calculated for each group. If a group of shapes has

no shapes with restricted movement, all the shapes in the group can move in

any direction. Otherwise, the degrees of freedom are propagated between the

shapes in the group based on the current degrees of freedom and the contact

surfaces of the shapes.

5. After all the degrees of freedom are set, the pivoted shapes are set to have no

translational degrees of freedom.
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The rotational degrees of freedom are calculated in a more direct way. The shape

is rotated to a fixed number of angular positions and checked for any overlap with

anchored shapes or shapes with which it collides as determined by user responses to

information requests. The degrees of freedom are set so that the shape can rotate to

any position without overlap.

Projections

Collisions also play a significant role in the physics simulator. The system uses pro-

jections to calculate possible collisions. Projections are polygons that represent the

area that a shape moves through as it follows its trajectory or rotation path. Projec-

tions for translating shapes have a finite (but large) length limit of 200,000 himetric

units, which allows the simulator to calculate possible intersections. Once the pro-

jections are determined, Midos finds all the intersections of the projection areas.

These intersections represent possible collisions. Figure 7-6(a) shows two shapes and

their intersecting projections indicated by the shaded regions. The intersection of the

projections leads to a predicted possible collision between shapes 1 and 2.

(a) A potential collision is predicted for
shapes 1 and 2.

(b) A potential collision between shapes
1 and 2 is no longer predicted due to an-
chored shape 3.

Figure 7-6: Two examples of two translating shapes and their projections indicated
by the shaded regions.

The projections are refined to reduce the number of predicted collisions that can-
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not occur. Projections can be limited by anchored shapes, pulleys, and springs that

constrain the path of a moving shape. Figure 7-6(b) shows how the projection of the

shape numbered with 2 is stopped by anchored block numbered 3. A collision with

shape 1 is no longer predicted by Midos.

The qualitative simulator can determine if objects might collide because of in-

tersecting projections, but it cannot be certain because the speed of the objects is

unknown. Each potential collision has a matching information request that is gener-

ated to determine if the collision actually occurs.

The system assumes that if a shape can move all the way to an anchored shape

that it will do so, and the system will not ask if the two shapes will collide. This

assumption works for the current system, but refinements may be necessary in the

future because sometimes the shape will change direction before it reaches the an-

chored block. Currently, for example, gravity only affects shapes when the degrees of

freedom of the shape are changed. If a shape moves across a long distance to an an-

chored body, it is possible that the path or direction might change over that distance.

The current system does not take this into account. The solid red line in Figure 7-7

is the path Midos currently predicts and results in a collision. The dashed green line

shows a more accurate path that takes gravity into account and does not result in a

collision.

Figure 7-7: The solid red line indicates the path Midos currently predicts and results
in a collision. The dashed green path indicates a more accurate path that would take
gravity into account and does not result in a collision.
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Statements

Statements represent a piece of knowledge about a property or behavior of the device,

and are used to keep track of bits of information as the simulation proceeds. Some

statements represent basic information about the device, such as a statement about

a shape that is connected to a spring. Other statements store the result of an infor-

mation request, such as a statement that two bodies collide with each other. The

statements can be generated and used by different components of the physics system.

Statements can be generated and consumed at different points of the simulation.

Statements about bodies connected to a spring will persist throughout the simulation.

Other statements, such as those about balanced shapes or collisions, will persist only

as long as they are relevant. If a body is balanced by several other bodies, a collision

involving any of those bodies will cause the statement about the balanced body to be

consumed. Similarly, a statement that two bodies will collide will be consumed after

the collision between those shapes occurs.

Determining when the information represented by the statements is no longer

relevant poses an interesting challenge, this is also known as the frame problem [40].

In particular, there is tension between keeping collision information for too long and

not keeping it long enough. If the information is kept too long, out-of-date collision

information might be used. If it is not kept long enough, the user will be asked

the same collision questions repeatedly. We strike a balance by more aggressively

forgetting the collisions that do not occur while keeping the information about the

collisions that do occur.

Modifiers, Uncertainty, and Conflict Resolution

The physics simulator performs updates in two phases. The first phase calculates the

new velocity of all the shapes based on the collisions, springs, weights, and pulleys.

The second phase analyzes the results of the first phase and identifies any conflicting

updates. If there are no conflicts, the velocities of all the shapes are updated. If there

are conflicts, an information request is created to obtain the desired velocity from the
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user.

The physics simulator handles uncertainty when a precise value for a motion direc-

tion (translational or rotational) cannot be determined. A shape can be updated to

have a range of possible directions or an unknown rotation. Similar to the conflicting

updates, an information request will be generated to ask the user for the informa-

tion. This allows the system to ask a question about whether a shape will move in a

clockwise or counterclockwise direction, or ask a question about the angle of motion

of a shape.

User Provided Input

Midos is not driven exclusively by the physics simulator. In addition to the simulator,

the user is prompted for critical information in a series of questions derived from the

information requests. Asking the user questions allows the system to overcome some of

its shortcomings and limitations by updating the physical situation based on the user

provided data. For example, the physics simulator is qualitative and does not know

the magnitude of any velocities, making it impossible to determine quantitatively if

a collision between two shapes will occur. The system asks the user if the collision

will occur and overcomes this shortcoming.

7.2.4 Generating Information Requests

The techniques described in the previous section generate information that can update

the physics simulation to the next state, and generate information requests that are

used to form questions to ask the user.

Each type of information request analyzes the current information in the physics

simulator and the current set of statements, and creates the appropriate set of re-

quests. Each request encapsulates the information needed to ask the question and

interpret the answer from the user. The information in the statements allows the in-

formation requests to determine which information has already been obtained so that

questions are not repeated. The information requests are described in more detail in
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Section 7.3.

Auto Answering

Midos attempts to answer a few of the information requests without asking the user.

In particular, when a body collides with a set of previously balanced bodies, Midos

will attempt to determine which way the (now unbalanced) pivoted body will rotate.

Thus, the system can avoid asking the user this particular question.

7.2.5 Shortcomings

The system assumes that a shape will move as far as it can until it hits something or

the degrees of freedom change. This is true in the system’s physics model because it

does not handle friction. The user, however, may wish to move the block a smaller

amount than the system thinks it will move. In the current system, it is not possible

to convey this information.

The system does not give the user an easy way to go back and make corrections.

For example, if the user specifies the length of a spring and does not quite have it

stretch far enough for an intended collision to occur, there is no way to go back and

tell the system that the spring stretches further.

Another difficulty with the current system is that it forces the user’s answer into

one of the answer choices that the system computed. Sometimes the user may want

to correct the system and provide an updated position or velocity for a particular

body. In the current system this cannot be done.

7.3 Information Request Processing

Each type of information request analyzes the current state of the system and the

physics by using the positions of the shapes and the collection of statements about

the system that have already been determined.

Information requests encapsulate pieces of information that Midos needs to ac-

quire. For each request, Midos:
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• Analyzes the current physics state, statements, and pending updates; then de-

termines if it needs any information from the user,

• Generates the question to ask the user.

• Anticipates what speech and sketching to expect in the user’s reply.

• Interprets the user’s reply and updates the physics state appropriately.

Matching the user’s input was described in Chapter 5, but each information re-

quest knows how to handle the speech and sketching it receives.

Table 7.1 and Table 7.2 list some details about the information requests used in

Midos. The order the requests are listed in the table reflects the priority of different

information requests. The following sections describe the process for selecting the

next request, generating the question, and interpreting the user’s reply.

7.3.1 Determining the Next Request

Several factors are considered in the attempt to ask questions in a reasonable order and

avoid redundancy. First, information requests are not created if there is already an

answer in one of the statements. Second, information requests can store information

for other information requests of the same type. Currently, this is used for collision

requests to store the distance to the collision. Midos uses the distances to ask about

the collisions that happen at short distances first. After the user verifies that a

collision happens, Midos will not ask about collisions involving those shapes that

happen at longer distances.

The list of possible information requests is generated in an order that reflects the

interdependence of the questions. For example, the system will ask about a body’s

trajectory before inquiring about a collision involving that body. The answer to the

trajectory question could render the collision question moot.

Although there is a specific order to the information requests (as shown in Ta-

ble 7.1 and Table 7.2), the order is modified in several ways:
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Type Image Description & Sample Text

anchor
ask if a not anchored, not moving block is
anchored
“Is (this shape) anchored?”

bounce
does a shape bounce after colliding with an-
other shape
“Does (this shape) bounce after the colli-
sion?”

angle
what angle is the shape moving in (or is it
stationary)
“Which of {these directions} does this shape
move in?”

rotation direction
which direction (or no direction) does the
shape rotate in
“What direction does (this shape) rotate in?”

rotational velocity
pivoting shape might rotate or might be bal-
anced
“I can not determine the rotation of (this
shape) now. This shape causes a (clockwise
rotation.) <short pause> <clear stroke>
This shape causes a (counterclockwise rota-
tion.) <short pause> <clear stroke> <short
pause> <clear strokes> At this instant what
direction does (this rotate in) or is it bal-
anced?”

pulley
what direction does the pulley move or is it
balanced
“What direction does (this shape) move in at
this instant?”

distance
how far does a shape move along its trajec-
tory (or is it stationary)
“How far does (this shape) (move?)”

Table 7.1: Part 1: The information requests, a sample question, and an image from
the question being asked.
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Type Image Description & Sample Text

rotation distance
how far does the shape rotate around the
pivot
“How far does (this shape) (rotate?)”

spring direction
which way is the spring force
“Will (this spring) expand or contract?”

spring length
how far can the spring expand or contract
“How far does (this spring) stretch?”

spring end
what happens when the spring expands or
contracts all the way, does it change direction
“(This spring has) reached its maximum
length. What happens next?”

collision
do two shapes collide
“It looks like {these shapes} {will collide, do
they?}”

collision location
where do two shapes collide
“(These two) (bodies) collide (here.) <long
pause> <clear strokes> Where on (this)
body does the contact occur?”

next
what is the next thing that happens or is that
the end of the simulation
“What happens next?”

Table 7.2: Part 2: The information requests, a sample question, and an image from
the question being asked.
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1. Requests that have already been asked and requests that are no longer valid are

removed from the list.

2. If the user did not successfully answer the question from the last information

request, try that request again.

3. If there is a request of the same type that involves one of the same shapes as

in the previous question, use that as the next request. If possible, we want to

keep asking about the same shapes.

4. Use the next request in the list.

7.3.2 Generating the Question

Asking the user questions about the design engages the user, the user supplies more

details, and Midos receives the information necessary to continue the simulation.

Each information request knows how to form an appropriate question to acquire the

information it needs from the user. These questions vary depending on the current

state of the physics. For example, a question about a body’s rotational direction uses

information about the different forces and the shapes that exert these forces in its

question. In addition, if a question is asked multiple times, the question is changed

to reflect this repetition by adding words such as “now” or “again.” For example,

Midos will ask “Does this shape bounce again after the collision?” if the shape has

already bounced after a previous collision. If the user does not provide an acceptable

answer the first time the question is asked, she is given additional guidance when the

question is asked again. For example, if Midos asks about a collision a second time, it

will ask: “Do the bodies collide? Yes or no?” Providing the user additional guidance

to encourage an answer that the system will understand has been incorporated into

other systems [27, 28, 31, 33]. Midos has the advantage of knowing the question

that was asked and the expected answers. The details of generating the speech and

sketching output were discussed in Chapter 6.
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7.3.3 Processing the Reply

The initial processing of the user’s response based on the speech and sketching that the

information request is expecting is discussed in Chapter 5. When a match is found,

the information request generates a set of statements that reflect the information

contained in the user’s response. If the user was asked about the direction of a body

and supplied a particular angle for the direction, the velocity of the body will be

updated. If the user specified that a shape was balanced, the information request will

update the shapes that are balanced by setting the velocities appropriately. It will

also add a statement that specifies the shapes that are balanced so that they will not

be updated until the balance is disturbed.

Users provide answers of varying length. As in the original set of user studies, some

of the answers are long. If the system cannot process the user’s input, the request

for information is made again with additional guidance about the type of answer the

system is expecting. Statements are added to the physics simulation only when a

match with the user’s input has been successfully made, as described in Chapter 5.
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Chapter 8

MIDOS Evaluation

This chapter discusses the evaluation study of Midos. Midos has sufficient capabil-

ities to be evaluated by real users to determine how closely the dialogue in Midos

matches the observations in the original studies that guided its development (Chap-

ters 2 and 3). The evaluation study showed that users preferred interacting with

Midos more than a text version of the system. Although some users perceived that

the text version was faster, this was not supported by the data.

8.1 Setup

The primary purpose of the study was to test the dialogue capabilities of Midos and

to observe how well the user interacted in a dialogue with the system. Participants in

the study interacted with two versions of the system. In both versions the computer

asked the user multimodal questions using speech and sketching. In one version the

user could respond to the questions using sketching and speech (Midos version). In

the other version, the bodies were labeled with numbers and user had to type her

answer (text version). The two user interfaces are shown in Figure 8-1. The text

version provides a basis of comparison for the multimodal version of the system.

There were 12 participants in the study who responded to advertisements on the

M.I.T. campus or responded to emails. The participants ranged in age from 20 to 39

with an average age of 26.3. Seven participants were male and five were female. One
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(a) Midos version user interface.

(b) Text version user interface.

Figure 8-1: The user interfaces for the study participants for the Midos and text
conditions.
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participant owned a Tablet PC, and four participants had used one many times. Five

people had used a tablet only once before and two people had never used one. The

participants were given two movie tickets as compensation.

Each participant used a Tablet PC which ran a slightly modified version of the

C# Midos code. The Java part of Midos ran on the experimenter’s computer.

The speech recognition and generation were performed on the participant’s tablet.

Participants wore a headset microphone/headphone that allowed participants to hear

the computer generated speech and provide verbal input.

The participant’s microphone was connected to the laptop and to an audio mixer.

Similarly, the audio output of the participant’s tablet was connected to the partic-

ipant’s headset and to the audio mixer. The mixed audio feed was distributed to

the experimenter and to a video camera allowing the experimenter to listen to the

questions and answers while it was recorded. The study was videotaped primarily to

record the audio for further analysis, but also to have a visual record. The video was

recorded to tape and then subsequently digitized and stored electronically.

Figure 8-2 shows an overhead view of the study layout. The participant and

the experimenter were in separate rooms. This provided a noise-free environment,

prevented the experimenter from affecting the participant’s responses, and allowed

the experimenter to use the wizard interface undetected.

Figure 8-2: Overhead view of the Midos evaluation user study layout.
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8.1.1 Wizard Details

Several adjustments to the Midos system were made for the user study. The largest

change was the addition of a wizard [17] to the system. The job of the wizard was

to interpret the participant’s speech or text input. We chose to run a Wizard-of-

Oz experiment, to avoid problems with speech or text recognition accuracy and to

keep the focus on the dialogue component of the interaction. Understanding the

unrestricted text the participants entered required the use of a wizard, and to keep

the two experimental conditions as similar as possible, we also used a wizard in place

of automatic speech recognition. The interface for the wizard is shown in Figure 8-3.

Figure 8-3: The controls the wizard used in the evaluation study.

Midos selects the questions and the wizard interface allows the experimenter

to enter the user’s answer using a set of buttons and fields. The fields allow the

experimenter to adjust or enter numbers that indicate properties such as the direction
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of the user’s strokes. The wizard can also select whether the question was answered

successfully or indicate that the answer is insufficient or in conflict. The wizard

interface does not change other aspects of the system. The system still waits for the

user to finish her input and pause before it will acknowledge the input and update the

physical situation. Users can still interrupt the computer as it is asking the question.

In the text version, the wizard sees what the participant types in real time, and

can enter the interpretation of the user’s input at any time. The system will not act

on the participant’s text input until they press the submit button. Similarly, in the

Midos version, the wizard hears the participant’s speech and can see any strokes the

participant draws when they lift the pen. In the Midos version, the system attempts

to calculate the appropriate parameters from the participant’s strokes to help improve

the responsiveness of the wizard. The wizard can again enter an answer at any time,

but the system will not act on it until the participant pauses her sketching and speech.

8.1.2 Study Procedure

The participant first filled out a pre-study questionnaire that included demographic

information questions. She was then given a set of written directions that explained

how to use the interface. The experimenter answered any questions the participant

had. After the participant understood how to use the system, the warmup condi-

tion was run. Following the warmup device, the experimenter again answered any

questions the participant had.

The devices used in the study are shown in Section 8.2. For each device the

participant first watched a movie of a Working Model simulation of the functioning

device. The video could be viewed as many times as the participant wanted. Then

the participant answered the multimodal questions about the device by using either

the Midos or text version of the system. The warmup condition was always the

Midos version to help familiarize users with the novel interface. The remaining four

devices alternated between the text version and the Midos version. The order of the

versions and devices was randomized to avoid any ordering effects. For the Midos

conditions, the Tablet PC was placed in the flat, slate mode. For the text conditions,
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it was placed in laptop mode.

At the start of each condition, the participant’s screen flashed and the laptop

emitted several beeps. These indicators are used to synchronize the sketch file with

the video tape so that the data can be replayed together.

Immediately after answering each question, the participant was asked to rate the

question on a 1-5 scale. This dialog box was modal, so that the participant was forced

to answer this question before the system would continue. The dialog box is shown in

Figure 8-4. The wizard does not see these scores and therefore cannot inadvertently

affect the results.

Figure 8-4: The rating dialog box used in the evaluation study.

Data files that captured all of the input and timing data for the questions and

responses were saved after each device. After all of the conditions were completed,

the user completed a second questionnaire that gathered data about her impressions

of the two versions of the system.

8.2 Devices

The five devices used in the study are shown in Figure 8-5. For the text conditions,

the bodies were labeled with numbers that the participants could reference in their

descriptions. The devices, other than the warmup device, were chosen to have a clear

purpose, for example knocking over a bowling pin.
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(a) Warmup (b) Bowling ball roller

(c) Flag raiser (d) Switch flipper

(e) Egg cracker

Figure 8-5: The five devices that the participants in the study described.
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8.3 Qualitative Results

The qualitative results from the study fall into several categories, including sketching

observations, speech observations, and general observations.

8.3.1 Sketching Observations

One participant starting doodling after answering the questions. This caused the

system to seem unresponsive because it was waiting for the participant to finish

drawing. After several instances of this behavior, the experimenter informed the

participant that the doodling was delaying the system response.

Some participants started writing words such as “Yes” and “No” when verbally

answering the question. When possible the wizard would indicate that the answer

could not be understood in an effort to discourage this behavior, however, this had a

limited effect.

8.3.2 Speech Observations

The vocabulary participants used was varied. Some participants used words such as

“affirmative” as a synonym for “yes.” Other answers included phrases such as “dude”

and “my friend” in reference to the computer.

Participants in both the Midos version and the text version described distances

and angles using relative terms. They used words and phrases such as: up, down,

down and to the right, and half the length of shape five. Even in the text version that

provided a direction and length key (the scales at the bottom right in Figure 8-1(b)),

participants almost exclusively used relative language.

The tone and speed of the participant’s voice in the Midos version varied as the

participant was more or less confident in her answer. A more advanced speech recog-

nizer might be able to take advantage of this and provide Midos with an indication

that the confidence in the answer is low or that the question needs to be clarified.
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8.3.3 General Observations

Several minor technical difficulties occurred during the user study. The data for

several sketches were lost, however, the data related to question and response timing

were preserved. Occasionally a limitation of the physics simulator would cause odd

behavior to occur or cause the system to get stuck. These instances were infrequent

and in most cases the experimenter could help get the system back on track. In the

few cases that the system got stuck, only a few questions remained. In these cases,

the condition was ended before the device was completely simulated.

The egg cracker required the longest explanation, followed by the switch flipper.

Participants spent less time explaining the bowling ball roller and the flag raiser. The

shorter explanations contained more questions that could be answered with a simple

yes or no and less opportunities to use sketching.

Many of the participants were confused when they started the warmup condition.

After some uncertainty they became more comfortable with the speech and sketching

interface. A demonstration video may be helpful if a similar system is deployed.

Although a video was considered for the study, it would have biassed the interaction

and the responses.

Participants responses tended to provide more information than the system could

handle (see Figure 8-6). These long explanations are similar to the explanations in

the dialogue user study (Chapter 3). These extensive descriptions occurred more

frequently at the start of each interaction. After the system reacted to only a small

portion of the provided input, the participant provided shorter responses. The long

explanations were also present in the typed responses (see Figure 8-7). The length of

participant’s Midos answers was limited because a small pause enabled the system

to process the participant’s input and then move on to the next question. In the text

version, this was not the case. The computer could only process the response after

the participant clicked the submit button.

Some of the descriptions provided by participants could not be handled by the

system. These limitations include:
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Figure 8-6: Two examples of the user providing more data at once than the system
can handle.

3 falls of off 8 and crashes into 4. 1 (the spring) contracts and causes
4 to crash into 5. 5 is pushed into 2 from the angle of 4 falling into it.
2 is then slid across 12 from the reaction of 5 slamming into it. 2 then
falls off of 12 and lands on 6. while 6 moves down, 2 slides back and
forth on 6 until 7 slows down 6. this is the end.

Figure 8-7: An example of a user providing more text at once than the system can
handle.

• The system can handle only the action it asked about; it cannot handle more

than one piece of information at a time.

• The system does not handle paths, only specific directions (a particular angle).

• The system does not model small movements, such as oscillations.

• The system does not handle moving a short distance along a surface (friction).

8.3.4 Questionnaire Ratings

The Midos version was preferred by 10 of the 12 participants. Participants were

more divided on the other preference questions. Seven people thought the Midos

version was easier to use and five thought the text version was easier. Surprisingly,

seven people thought that the text version was faster. We analyze this result in more

depth in the next section.

Eight participants thought the multimodal system was more accurate, and eight
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people trust the Midos version, while 6 trust the text version. Six people would use

the Midos for their own tasks and five would use the text system.

8.3.5 Questionnaire Comments

At the conclusion of the study, participants provided comments on the systems:

• “strengths was typing, weak was sketching”

• “I gave negative ratings when questions were worded in a confusing way (mostly

talk about “collisions” when two bodies were in contact) or seemed irrelevant...

Typing was faster, especially since I could answer a long question before the

voice finished reading. Drawing was more accurate for describing directions of

movement.”

• “The sketching system is more intuitive and allows more freedom. The typing

system does not allow the same degree of expression.”

• “Drawing... too slow sometimes, a picture is worth a million words. Vice versa

[for typing]”

• “I gave negative ratings to question that had little to no bearing on the purpose

of the device and conversely positive ratings to those critical. For each of the

systems, it seemed less able to cope with describing small details.”

• “I gave negative ratings for question I found irrelevant”

• “I gave negative ratings to repetitive question. Typing was faster than speech

& sketching. The sketches were more precise and intuitive.”

• “I gave questions that were unclear or repetitive negative ratings, and positive

ratings for questions that were especially clear or good “Mastering Physics”

type question. ... does “falls down” work or does the system really need angles

and lengths?”
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• “The shorter the question the better! The weakness of typing was directions...

The strength was the sketch stylus allowed direct and simple communication

with the computer!”

• “I liked the speech and sketching interface. Obviously some tasks are easier for

the speech and sketching interfaces while some tasks are easier for the keyboard

interface. Text required a lot of verbosity for some questions.”

• “The system as a whole would be more fluid if I could provide more information

at once. I did like the questions where it knew qualitatively what should happen,

just not the right angles / distances to use. They make it feel like the system

“gets it.” Typing is precise, and it’s very hard to tell if it got the speech right.”

• “There were two types of bad questions - ambiguous and “stupid” - either the

system was asking a question where the answer was a simple extension of the

question, or repeatedly asking the same question. Excellent questions made use

of sketching and had answers which required some thought. ... Sketching /

Speech - it was much easier to specify directions, associations, etc. Sketching /

Speech felt much more fluid and intuitive. With text I felt like I had to spend

more time thinking about what I wanted to say.”

Participants also provided their thoughts about improving the system:

• “Let the system decide some of the actions rather than asking the user.”

• Suggested combining the sketching and typing (instead of speech)

• “At times I felt impatient with the speed of the computer’s speech.”

• “I would have appreciated more feedback from the system so I’d know that it

understood what I was saying.”

• “Faster response time for speech & sketching”

• “It needs to show me what it’s thinking. Once or twice it got on the wrong

track, but it took a while to realize and I can’t really correct it. But, don’t ask

140



me if it got it wrong every time, just let me answer the new question or tell it

to back up.”

Participants in the study wanted the physics to handle more complicated paths

and motions, were mixed in their opinions about whether text or speech and sketching

was better, and pointed out that sketching was particularly valuable in some cases.

The next section discusses the quantitative results from the study.

8.4 Quantitative Results

This section discusses five sets of quantitative results from the study, speech and

sketching timing, speech and text statistics, color usage, perceived interface speed,

and question ratings.

8.4.1 Speech and Sketching Timing

In the Midos conditions, participants could use a combination of speech and sketch-

ing. We conducted an analysis similar to the one in Section 3.3. The current study was

set up in such a way that we could easily obtain information about the phrase-level

grouping of the speech and sketching. The participants responded to 510 questions.

Many of those responses were unimodal, 41 used only sketching and 334 used only

speech1. There were 135 multimodal responses; 71% of these responses started with

speech. Table 8.1 shows more detailed results which are comparable to the results

from our dialogue study. The data is also shown in the graph in Figure 8-8. Our

results on a phrase level again differ from the results reported in [49], which reported

that sketching usually preceded the speech. Instead they show that a speech utterance

precedes sketching in most of the multimodal input to Midos.

1The high number of speech only responses is likely due to the large number of questions that
could be answered with “Yes” or “No.”
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Figure 8-8: A graph depicting the time differences between the start and end times of
the speech and sketching in each phrase group. The x-axis is the time in milliseconds
that the start of the sketching preceded the start of the speech. The y-axis represents
the number of milliseconds that the end of the sketching preceded the end of the
speech. The words in the corners of the graph give a visual depiction of the overlap
of the speech and sketching in that quadrant.
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Speech Precedes Sketch Precedes Neither Precedes
(71%) (28%) (2%)

(2%) (2%) (0%)

(32%) (5%) (1%)

(36%) (21%) (1%)

Table 8.1: The temporal overlap patterns for the phrase groups for the Midos study.
The alignment of the speech and sketching is illustrated in each table cell. The
percentage of phrase groups in each category is also noted.

8.4.2 Speech and Text Word Counts

Participants in the dialogue user study were voluble. The participant’s replies in the

evaluation study were analyzed to see how long the text input and speech utterances

were.

There were a large number of questions that could be answered with a simple

“yes” or “no” response and this is reflected in the data. There were 531 text input

replies, of which 314, or 59.1%, were one word. Of the speech utterances, 228 of the

497, or 45.8%, were one word. Some user responses were quite lengthy: the maximum

number of words in a text input was 75 and the maximum in a speech utterance was

67 words. The average number of words in a speech utterance was 3.7, and the

average number of words in a text input was 3.3. Figure 8-9 shows a histogram of the

distribution of the length of the speech utterances and text input. Note that there

are fewer two word utterances than three word utterances.

The number of questions and responses for each condition is also informative.

The average number of speech utterances used to describe a device was 20.7, and the

average number of text inputs was 23.8. The egg cracker took the largest number of

interactions on average to describe (30.5 speech utterances and 35.2 text inputs). The

egg cracker also had the longest individual interaction length, 43 speech utterances
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and 55 text inputs. The bowling ball roller took the fewest number of interactions to

describe (13.0 speech utterances and 17.7 text inputs).

Figure 8-9: A histogram showing the word count frequencies for speech utterances
and text input. The x-axis represents the number of words in the speech utterance
or text input. The y-axis represents the frequency of the counts.

8.4.3 Color Usage

An interesting qualitative result from the study was that participants did not switch

ink color very often. Analyzing the color data in more detail we found that 258 of

the 468 strokes were drawn with the default black pen. Participants switched colors

only 18 times, and those switches were all done by four users. One user accounted

for the vast majority (10 switches). This user had never used a Tablet PC before and

started doodling part way through the experiment, although she still answered the

questions. The other three users who switched pen colors all had extensive experience

with Tablet PCs.
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There are several possible explanations for the difference in behavior between the

dialogue study and this study. In the dialogue study, the ink was persistent unless

explicitly removed by one of the participants. In the evaluation study, the ink is

automatically removed after each question is answered. As a result, there is less need

for a contrasting color of ink because there are fewer colors in the sketch at any one

time. Additionally, the basic device did not have to be drawn by the study participant.

In the dialogue study, the participant started with an empty screen. Switching ink

color may have been more useful when the participant needed to differentiate the

basic components of the design.

8.4.4 Perceived Interface Speed

A reoccurring comment from the study participants was that the text interface was

faster or that the Midos interface was not as responsive. Curiously, this is not

supported by the timing data gathered in the study and therefore must be a perception

issue. Most participants did not realize they could interrupt the computer speech and

sketching because the directions did not mention this capability. Participants did type

answers in the text condition as the computer was speaking, but the participants were

careful not to submit the answer until the computer finished the question. Perhaps

the text condition seemed faster because the participant was actively engaged typing

instead of waiting passively while the computer finished asking the question. The

reason this was possible is that typing is a separate channel, so the two can be used

simultaneously without conflict (i.e., interrupting).

We investigated the timing data to determine whether or not the text version was

faster. First, we examined the duration of the participant’s responses. The response

duration is the duration of all of the participant’s speech, sketching, and typing for a

question. The mean response duration for the Midos version is 3248ms; the response

duration mean for the text version is 7702ms. This difference is significant (t(688)

= 6.604, p<.01). The duration of the speech responses is about half as long as the

duration of the text responses.

Similarly, the total duration of the questions, measured from the question begin-
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ning to the response end, is smaller for the Midos version. The average question and

response duration is 13.9s for the text version and 8.6s for the Midos version. This

is also significant (t(688) = 6.77, p<.01).

A final possibility is that the wizard took longer to respond in one of the versions.

It was easier for the wizard to anticipate the participant’s reply in the text version

because the wizard could see the text as the user typed. Occasionally a user in the

speech and sketching condition would change her answer at the last second; a quick

answer change in the text version was impossible. The data shows that the wizard’s

response time was not significantly different between the two version, in fact, the

response time was slightly faster in the Midos version. The mean was 8125ms for

the Midos version and 8559ms for the text version (t(688)=-0.877).

All of these statistics show that the Midos version is faster than the text version

even if some users do not perceive it that way.

8.4.5 Rating Data Results

We collected rating data for every question that was asked in the study. We analyzed

the data for differences based on the number of times the question was repeated,

differences between the Midos and text versions, and differences in ratings between

types of questions.

Not surprisingly, the ratings for questions decreased as the question was repeated.

The mean rating for a question the first time it was asked was 3.45, the second

time it was asked it was 3.14, and third time and beyond was 2.87. The difference

between the first and second time is statistically significant (t(902)=3.88, p<.05),

as is the difference between the second and the third time and beyond repetitions

(t(389)=2.33, p<.05).

There was no difference in ratings between the text and Midos versions; the rating

average for the two versions were nearly identical. The mean rating for the Midos

version was 3.296, and the mean for the text version was 3.298. This indicates that

the users were rating the questions and not the method they were using to answer

them.
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Type Mean Median Variance
angle 3.30 3 1.38
bounce 3.20 3 1.10
collision 3.32 3 1.35
collision location 2.87 3 0.84
distance 3.08 3 1.31
next 3.58 4 0.89
pulley 3.21 3 1.03
rotation distance 3.25 3 0.41
rotational velocity 3.22 3 1.37
spring direction 3.84 4 1.06
spring end 2.92 3 1.74
spring length 3.46 4 0.87

Table 8.2: Question ratings for the different types of information requests.

We analyzed the questions ratings to determine if there were significant differ-

ences between question types. An ANOVA analysis reveals that the differences are

significant (F = 1.83, Fcritical = 1.80, p < .05). Looking at the average ratings, shown

in Table 8.2, the question about how far a spring stretches and the question about

what happens next get high ratings. The questions that ask the user to specify how

a collision occurs or what happens when a spring stretches as far as it can, get low

ratings. Both the question ratings and the feedback from participants show that ask-

ing intelligent, interesting questions is valued by the user, although asking repetitious

questions is not.

8.5 Study Summary

The results of the Midos evaluation study show:

• Participants had a natural conversation with the system about the design with

long detailed answers similar to the descriptions in our dialogue study.

• The physics simulator was good enough to support the interaction.

• Participants preferred Midos to the text only version.
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• Some participants perceived that the text version was faster, which was demon-

stratably false.

• Participants gave lower ratings to repeated questions.
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Chapter 9

Related Work

9.1 Our Previous Work

Our research group has focused on sketching interfaces. Sketching is a powerful

modality for capturing designs, enabling users to quickly draw a device in a familiar

modality. To date our group has developed systems that understand sketches in a

variety of domains [5, 29, 52, 46].

Our previous system, ASSIST [5], lets users sketch in a natural fashion and rec-

ognizes mechanical components (e.g., springs, pulleys, axles, etc.). Sketches can be

drawn with any variety of pen-based input (e.g., Tablet PC). ASSIST (see Figure 9-1)

displays a “cleaned up” version of the user’s sketch and interfaces with a simulation

tool to show users their sketch in action.

Figure 9-1: The left image shows the sketch in ASSIST. The right image shows the
simulation.

Assistance[45] was a previous effort in our group to combine speech and sketch-
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ing. It built on ASSIST[5] by letting the user describe the behavior of the mechanical

device with additional sketching and voice input. More recently we built a system

[2] that let users simultaneously talk in an unconstrained manner and sketch. This

system had a limited vocabulary and could not engage the user in a dialogue, limiting

its ability to interpret the user’s input.

9.2 Multimodal User Interfaces

Multimodal user interfaces originated with Bolt’s “Put-That-There” system. Working

in the domain of rescue mission planning, Bolt’s system used pointing gestures to

resolve designated keywords in the speech [11]. The field has gradually grown to

include more interesting and complex non-verbal input.

QuickSet [47] is a collaborative multimodal system that recognizes sketched icons

built on an agent-based architecture. The user can create and position items on a

map using voice and pen-based gestures. For example, a user could say “medical

company facing this way <draws arrow>.” QuickSet is command-based, targeted

toward improving efficiency in a military environment. This differs from our goal of

creating the most natural user interface possible. In contrast to our system where the

user starts with a blank screen, QuickSet is a map-based system and the user starts

with a map to refer to. QuickSet uses a continuous speaker-independent speech

recognition system like Midos. QuickSet differs from our system in several ways:

it provides users a map to refer to, and does not provide the multimodal dialogue

capabilities for the computer.

There are several other related projects[22, 47] that involve sketching and speech,

but they are focused more on a command-based interaction with the user. In our

system, speech augments the sketching; in other systems, the speech is necessary to

the interaction.

Several existing systems allow users to make simple spoken commands to the

system [20, 37]. We had many instances of users writing words and speaking them,

which is very similar to the types of input that [37] handles. Kaiser et al. describe
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how they can add new vocabulary to the system based on handwritten words and

their spoken equivalents of the type that appear in Gantt schedule-charts [38].

All of these systems have benefitted from a series of empirical studies of multi-

modal communication. Oviatt et al. document users’ multimodal integration patterns

across speech and pen gestures in [49].

9.3 Multimodal Dialogues

Focusing explicitly on managing multimodal dialogues, Johnston et al. describe

MATCH in [36]. MATCH includes finite state transducer-based component for com-

bining multimodal inputs, including speech, sketch, and handwriting, in the domain

of map-based information retrieval. MATCH’s dialogue manager enables a goal-

directed conversation, using a speech-act dialogue model similar to [50]. This tool

provides some multimodal dialogue capabilities, but it is not a sketching system and

has only text recognition and basic circling and pointing gestures for the graphical

input modality. Some recent work on multimodal reference resolution uses a greedy

algorithm that uses linguistic and cognitive principles to efficiently resolve the refer-

ences [14].

Another system [13] allows users to query a real estate database with a multi-

modal user-driven dialogue (speech and sketching), employing a probabilistic graph-

matching approach to resolve multimodal references. In a user study, this approach

proved effective in resolving ambiguous gesture inputs. Their study, like ours, high-

lighted the importance of disfluencies in the user’s speech.

There has been significant work on multimodal output, but it has focused on

generating combinations of speech, images, text, and gestures by an avatar or robot.

Mel the robotic penguin uses speech and gestures in a conversation with a user to

explain a device [53]. The modalities used are different from our work and Midos

users provide the system with the information that guides the dialogue. The COMIC

system [24] focuses on generating multimodal dialogues for an avatar including speech

output and pointing gestures. Most relevant is their work on interleaving speech and
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avatar animation [23] which takes a similar approach in timing the outgoing speech

and aligning the other modalities accordingly. However, the main focus of their work

is on supporting parallel output and planning of the multimodal dialogue. Our system

does not require this level of planning to produce the required output. We produce

the strokes to display along with speech instead of avatar animations and speech.

The system in [12] is used to animate two agents that communicate using speech

and coordinated gestures. The two output modalities are different from our system,

but have some important similarities. In both systems, both modalities influence the

combined output. Specifically, both systems must adjust the output based on the

duration of different output events – the speech and the gestures and the speech and

the sketching.

Multimodal output is also used in several other systems. The WIP system gen-

erates device instructions that are multimodal illustrated texts [7] containing images

and text. The text includes references to the images. Another system [8] uses a set of

rules and heuristics to produce a page layout of text and images. The structure and

references in the text determine the sections and the formatting. Related sections of

text are displayed using similar styles. This is analogous to our use of the same high-

lighter color when identifying similar objects. WIP and the system in [8] deal with

text layout and images instead of our system’s generated questions and identification

of objects on a shared drawing surface.

Medical images, a text display and speech are coordinated by the multimodal

system in [18]. The layout of the visual display provides constraints on the spoken

output. Textual data is highlighted as it is verbally referenced; one of the constraints

is that the text should be highlighted in coherent areas. The information displayed

differs from our system, but the coordination between the display and speech is simi-

lar. In our system, we focus on the highlighting parts of the dynamic sketched objects.

Again, our output is a shared medium and we ask the user questions based on the

system state rather than presenting fixed data to the user.

Giuliani [25] provides a way to specify speech and gestures for a human-robot

interaction in an XML format. The format supports specific start and end time

152



information for the gestures. Since our modalities require less information to generate

the output, we can use our simple format and calculate the exact timing information

as needed.

Spoken dialogue management is an important component of natural user inter-

action. We build upon the previous research [3, 26, 50], some of which is relevant

to managing a multimodal dialogue about design. Ideas such as turn taking and

determining which information you still need from the user, are still applicable. The

situation is made more complicated by the additional modalities and our desire to

make the interaction as natural as possible. In particular, the open ended interaction

means that the information the system requires is not known a priori as it is in other

domains such as airline reservations.

9.4 Querying the User

Midos is not the first system to ask the user questions to clarify their intent. The

Peridot system [42] is a tool for creating user interfaces. Based on a set of inference

rules, Peridot generates text-based questions to clarify the user’s design. The user

responds by typing an answer, and Peridot may ask follow-up questions. For each

question, it specifies what the acceptable answer choices are, for example “yes,” “no,”

“almost,” and “quit.” The system shares many challenges with Midos including

selecting the most relevant question, asking the question in a straight-forward manner,

and interpreting the user’s response. Midos differs in both the multimodal nature of

its questions and the user’s reply and its ability to accept open-ended user responses.

9.5 Wizard-of-Oz Studies

Wizard-of-Oz studies [17] are common and have been conducted in situations where

the wizard simulates both pen and speech data [48, 49]. In those studies, the pen

input was not open ended, and the wizard had a good idea of what the user would

draw.
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In our dialogue study, the pen input was open ended and each participant had a

unique design project that they described. These factors would have made it difficult

for a wizard to create a smooth and natural interaction.

The evaluation study of Midos used a fixed set of devices and had a limited

number of questions and possible responses. This allowed the study to use a wizard

for both speech and text recognition without affecting the responsiveness of the system

for the study participants.

9.6 Qualitative Physics Simulators

Our approach to the physics simulator drew ideas and approaches from several qual-

itative simulators. In particular, we used degree of freedom analysis from [39], order

based math computations from [43], and got the inspiration for physics “events” from

[55]. Our physics simulator differs from other qualitative simulators because it de-

pends on the user to supply additional information and therefore can make do with

less elaborate physics computations.
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Chapter 10

Future Work

Midos takes a novel approach to generating a multimodal dialogue using a qualitative

physics simulator to generate questions about simple mechanical devices. Our work

has many possible extensions and avenues for new research. This chapter discuses

future work in the sketch and speech input, the sketch and speech output, the core

components of Midos, and new domains.

10.1 Sketch Input

There are several ways that the sketch input to Midos can be improved. Princi-

pally, Midos can be extended to handle the initial sketch of the device. This could

be accomplished by integrating an existing sketch recognition system such as LAD-

DER [30] with Midos. The shapes in Midos’s domain are within the capabilities of

current sketch recognition systems.

In order to add this capability, several key issues will need to be addressed, in-

cluding differentiating strokes and accounting for inaccuracies in the sketch. Midos

would have to determine whether a stroke is part of an object in the sketch or an

annotation stroke. The distinction is important because object strokes are persistent,

but annotation strokes should be deleted when they are no longer needed. Midos

currently starts with a clean sketch enabling it to easily determine which shapes are

touching each other. Starting with sketched input makes such determinations more
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difficult because of the inherent inaccuracies in the sketch.

Midos can currently recognize complex paths that the user draws, but treats

them as though they were a line from the starting point to the ending point. Several

of the participants in the evaluation study (see Chapter 8) drew complex paths for

objects in the sketch to follow. The usability of Midos could be improved if it more

accurately interpreted the user’s complex paths.

The initial user studies revealed the importance of ink color in explanations (Sec-

tion 3.2.4). Ink of the same color indicated a relationships between components, and

ink of a different color indicated a new topic. Our more recent evaluation study found

color was used less frequently in Midos (Section 8.4.3). Even if it has a reduced role

in Midos, the system should pay special attention to the user’s choice of color. Color

choice may play an increased role if the system is extended to handle the initial

sketches of the devices because of the need to differentiate objects and annotations.

Midos currently lacks editing features once shapes are created. In the future, the

user should have the ability to move and resize shapes using the stylus and/or speech.

These capabilities would be important if the user needs to correct inaccuracies in an

initial sketch of a device created in Midos. The physics simulator could be connected

to these manipulations so that if one end of a pulley was moved, the other side would

move appropriately. Or, for example, if a user moved a block that was connected to

a spring, the spring could stretch or compress as the block moved.

The ability to directly manipulate the device components would allow for a differ-

ent variety of questions and response. Questions could be answered by dragging the

bodies to a new location. Questions could be asked by moving bodies to new loca-

tions and showing an animated version of collisions. Showing animations would clarify

some of the more complex questions that Midos asks by visually demonstrating how

a collision would occur. This ability might make the interaction more engaging for

the user while maintaining the symmetric quality of the interaction.

Handwriting recognition is another area where the capabilities of Midos could

be improved. Some multimodal systems tie handwriting and speech together, no-

tably [37]. The evaluation study had one instance of a user writing words in addition
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to speaking them. Although the simple mechanical devices did not require hand-

writing, our earlier dialogue study (Chapter 3) had many instances of handwritten

text. Design sketches in some domains contain important details in handwriting such

as component values in electric circuit diagrams. In order to integrate handwriting

recognition with Midos, the system will have to determine which parts of the sketch

are objects and which parts are handwriting. The location, drawing characteristics,

and surrounding context may help with this task.

10.2 Speech Input

The matching that we do between the incoming speech recognition results and the

expected speech could be improved to allow the users to say a more diverse set of

utterances. For example, WordNet [21] could be used to take a base form of a word

and determine alternative phrases. This would allow Midos to recognize synonyms

for words like “yes” without having to enumerate them explicitly. Similarly, the

recognized speech could be parsed and stemmed to isolate verbs and nouns to aid in

the matching.

The system should also use natural language processing techniques to parse multi-

part utterances from the user and separate them into their component pieces. Using

timing information for the speech pieces and any sketching input, the system could

form groups of related speech and sketching and proceed in a similar fashion to the

current system.

During the studies, users provided clues to their uncertainty and provided nar-

rations that didn’t relate directly to the sketch (as described in Section 3.2.8). For

example, a user said “now I’m going to switch ink colors.” Although it is not directly

about the sketch, this information can provide the system another alignment point

between the speech and the sketching. The users also expressed uncertainty about

the designs by saying things like “I’m not sure this is right...” A challenge for the

system is to take this uncertainty or conflicting information into account.

The speed and prosody of the user’s speech could be another source of information
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for the system. Qualitative observations from the dialogue and Midos user studies

showed that if a user is speaking quickly, she most likely had a great deal that she

wanted to say about an idea. The more quickly and loudly she spoke, the more

confident she was with her answers. If she was speaking slowly then she was more

likely to be thinking about the design or what to draw next. A more advanced speech

recognizer might be able to take advantage of these patterns. Changes in tone could

be used to detect new topics, determine user confidence in an answer, or decide that

a question needs to clarified.

The Midos evaluation study results showed that the users preferred to use relative

terms to describe directions and distances. Midos should be modified so that it can

translate phrases such as “up,” “down,” “down and to the left,” and “half the distance

to this block” into numerical values that can be processed.

When two humans discuss a design, they can establish new terms and vocabulary

to refer to different parts of a design. Midos should have a similar capability that

would allow it associate a particular word with a particular symbol in the sketch.

Current multimodal systems are capable of learning new vocabulary based on speech

and handwriting [38]. If the system recognized that an unknown word was spoken, it

should ask the user to identify the component of the sketch that should be associated

with that word. If the system needed to ask a question about that component later

in the dialogue, it could use the newly learned word.

10.3 Sketch Output

The computer generated strokes should resemble human strokes as closely as possible.

Currently, the different highlighter strokes are drawn as isolated strokes without any

higher level of organization. The current method could be extended to include a

concept of a computer “hand” that was drawing the strokes. The strokes that are

drawn could reflect the current location of the “hand” and minimize the distance the

“hand” would have to move.

Other factors could be used to render the computer strokes so that they appear
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even more human-like. This could be accomplished by varying the speed of the stroke

within the stroke itself, e.g., to slow down at corners. The computer generated strokes

could also use varying pressure instead of the current constant pressure which would

result in strokes that varied in thickness like user generated strokes.

Currently, if multiple strokes have to be drawn in a fixed window of time, the time

is allocated evenly to all of the strokes. Instead, the relative length and time required

to draw the strokes should be part of the calculation. If one stroke takes very little

time to draw and another takes a significantly longer time to draw, the interaction

could flow more smoothly if the allocation of time to strokes was globally optimized

so that the overall drawing time was minimized.

Midos currently provides verbal acknowledgments of the user’s input. It could

also provide visual feedback, for example, Midos might briefly flex a spring to show

that it has understood that the spring expands. These actions are more complex than

the current user interface supports. The interface currently only displays the objects

and strokes as they are drawn. Each update to the display is stored as part of the

sketch. These fleeting updates would require a modified architecture and a change in

how the objects are displayed on the screen.

Midos can draw arrows to indicate motion. In the future arrows could be replaced

or augmented with animations, dotted paths, or by giving the user the ability to drag

shapes around on the screen. Any or all of these methods might prove to be effective

ways of communicating motion to the user.

Digital ink persistence is an additional area of research. As design sketches get

more complicated, determining when to keep and when to erase computer and user

generated strokes also becomes an increasingly complex problem. A user study could

be conducted to determine if, when, and how quickly digital ink should be erased and

determine when it should be persistent.
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10.4 Speech Output

During the evaluation study of Midos, participants were very averse to interrupting

the computer’s speech. Midos can handle interruptions and will stop the speech

output, but users did not try this. The computer cannot determine that the user

wants to say something, so the user just waits until the computer finishes speaking.

If the computer’s speech output were to increase in length, this issue becomes more

critical because the longer the computer’s speech, the more likely it is that the user

will want to interrupt. One way to resolve this situation might be to insert pauses into

the outgoing speech to allow the user more opportunities to jump in and interrupt

the computer.

User’s responses to questions can vary in length and vocabulary. It is possible that

by varying the way a question is asked, the system could control the user’s response.

In the evaluation study, user’s responses to questions that could be answered with

“yes” or “no” tended to be short, but responses to open ended questions, such as

“What happens next?,” tended to be longer. At certain points in the interaction,

it could be desirable to have a short reply from the user and at other points in the

interaction a lengthy explanation might be more appropriate. If Midos could exert

some influence on the user’s replies, the interaction could be more efficient.

10.5 Core System

Midos currently handles responses to the question it has asked. Participants in the

studies, however, consistently tried to provide more information at once than the

system could handle. The user studies showed that even simple questions can elicit

lengthy, in-depth replies. This extra information could contain answers to questions

that have not yet been asked. For example, the user might say that a shape is not

anchored and neither are any of these other shapes. The system should be able

to parse this more complex answer and update its physics knowledge accordingly,

resulting in a decrease in user frustration and enabling Midos to interact with the
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user more naturally.

Midos currently asks many questions that seem obvious to the user. One way

to reduce the number of questions Midos asks would be to have the system guess

answers to questions and narrate these guesses to the user. If the user detects a

misstep, she could interrupt the system and have it rewind to the point where the

incorrect decision was made. It is also possible, however that the user just wants to

see that part of the simulation again. The system must determine which of these

actions the user means, and if the user is pointing out an error, the system must also

determine what it guessed wrong. In this interaction style, it would be important

to encourage the user to interrupt the system to make the necessary corrections in a

timely manner.

Midos already stores frequent snapshots of the state. The more challenging part

of this interaction is providing an easy interface for the user to control the rewinding

of the simulation and developing the natural narration dialogue that would explain

the decisions that Midos was making to the user. Other challenges in this interaction

include deciding which information to ask about, which information to guess about,

and what guesses to make.

The physics simulator is currently limited in scope. In the future, it could be

extended to handle more shapes, or handle physics calculations with more accuracy,

for example, extending the simulator to handle friction or simultaneous rotation and

translation. Currently, the physics simulator analyzes the state and determines how

far it can move all the bodies. This creates a “jumpy” animation of the device. It

might be possible to create a smooth animation of the bodies, however, the lack

of timing information in the qualitative simulation may make this difficult. Midos

uses the physics simulator to generate interesting questions to ask the user; any

improvements to the simulator should keep the overall objective in mind.

10.6 New Domains

Midos is built in such a way that the same principles can be applied to other domains.
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Instead of the physics simulator driving the interaction, domain specific knowledge

can be leveraged to come up with questions to ask the user. Research is currently

underway to apply the ideas and code from Midos to the domain of software pro-

grammable radios.

The two main components that need to be changed to apply Midos to a new do-

main are the question generation and the question selection components. Additional

interaction techniques and user interface adjustments may also be required.

In order to use Midos in a new domain, the physics simulator would need to

be replaced with a new information generation component. This component needs

to gather the information necessary to form questions about the objects in the new

domain. Also, new questions would need to be devised. The system needs to know

when the question is relevant, how to phrase the question, and the speech and sketch-

ing that are expected in response. The currently available techniques for identifying

components and indicating motion may or may not be sufficient in a new domain.

Once all the possible questions are generated, the system must select the appropriate

question to ask next. The question selection techniques used in the simple mechanical

device domain should provide a guide for new domains, but additional factors may

be important.

Other parts of the system would also need to be modified. Most of the domain

dependent data structures are contained in the physics components, but some mod-

ifications to data structures would be required. For example, the system currently

writes the system state to an XML file so it can be reloaded and replayed. The file

format and data structures would need to be extended to support the objects in a

new domain. Additionally, the current C# user interface may require the addition of

new features for the new domain.
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Chapter 11

Contributions

Midos creates a novel, symmetric, multimodal, interaction using speech and sketch-

ing as the modalities for both the computer and the user. Users describe early stage

mechanical devices, and the computer asks a series of questions about the device

based on the current state and the output of a qualitative physics simulator. The

conversation resolves uncertainties and ambiguities in the sketch, and allows Midos

to simulate the function of the device.

Midos and the user studies revealed several key concepts:

• Simple questions are powerful: Asking simple questions can lead to long, de-

tailed responses from the user.

• Cross-modality coherence: Speech and sketching that occur at the same time are

about the same topic. Users will keep the modalities synchronized by pausing

a modality as necessary.

• Color choices are deliberate: Using the same pen color indicates similarity, and

changing the pen color indicates a new topic or component.

The output Midos generates mirrors the user’s input as closely as possible, using

the same modalities and integrating them in the same manner as the user, working

to ensure that the modalities pause at the appropriate times. Midos selects ques-

tions based only on its physics simulator, the current state, and the recently asked
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questions. This creates a dynamic dialogue that depends entirely on the answers the

user provides.

Our evaluation study showed that Midos produces the same types of conversa-

tions as our initial human-human interaction studies. Participants provided long,

detailed answers to the computer generated questions. The users preferred using

Midos to a text based alternative.

Midos brings us a step closer to having a computer design partner that can ask

questions about a design in a similar fashion as a human, and by doing so help the

user clarify and refine her ideas.
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Appendix A

Expected Speech and Sketching

This appendix contains the expected speech and expected sketching for each infor-

mation request. A sample question and image are also shown for each information

request. The order the requests are listed in reflects the priority of the different

information requests.

A.1 Anchor Information Request

Figure A-1: Anchor information request question: “Is (this shape) anchored?”

Yes Speech

yes
yeah
of course
affirmative

Table A.1: Anchor information request expected yes speech.
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No Speech

no
nah
of course not
negative

Table A.2: Anchor information request expected no speech.
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A.2 Bounce Information Request

Figure A-2: Bounce information request question: “Does (this shape) bounce after
the collision?”

Bounce Speech

yes it bounces
yeah
yes
of course
of course it bounces
it bounces
bounces
it does bounce

Table A.3: Bounce information request expected bounce speech.
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Stop Speech

no it stops
no
no it does not bounce
no it doesn’t bounce
it does not bounce
it doesn’t bounce
stops
does not bounce
doesn’t bounce
it stops
no it stops
it doesn’t move
it does not move
does not move
it stays
stays
it stays there
of course not

Table A.4: Bounce information request expected stop speech.
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A.3 Angle Information Request

Figure A-3: Angle information request question: “Which of {these directions} does
this shape move in?”

The expected stroke type for the angle information request is a path.

Angle Speech

this direction
like this
it moves in this direction
it goes in this direction
it goes like this
it moves like this

Table A.5: Angle information request expected angle speech.
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Stationary Speech

it doesn’t move
it does not move
does not move
it stays
stays
it stays there
it stops
stops
it stops there
it is stationary
it’s stationary
stationary
it does not go in any direction
it doesn’t go in any direction

Table A.6: Angle information request expected stationary speech.

170



A.4 Rotation Direction Information Request

Figure A-4: Rotation direction information request question: “What direction does
(this shape) rotate in?”

The expected stroke type for the rotation direction information request is a path.

Direction Speech

this direction
like this
it moves in this direction
it goes in this direction
it goes like this
it moves like this

Table A.7: Rotation direction information request expected direction speech.

Clockwise Speech

clockwise
it moves clockwise
it rotates clockwise
it goes clockwise
it moves in a clockwise direction
it rotates in a clockwise direction
it goes in a clockwise direction

Table A.8: Rotation direction information request expected clockwise speech.
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Counterclockwise Speech

counter clockwise
it moves counter clockwise
it rotates counter clockwise
it goes counter clockwise
it moves in a counter clockwise direction
it rotates in a counter clockwise direction
it goes in a counter clockwise direction
counterclockwise
it moves counterclockwise
it rotates counterclockwise
it goes counterclockwise
it moves in a counterclockwise direction
it rotates in a counterclockwise direction
it goes in a counterclockwise direction

Table A.9: Rotation direction information request expected counterclockwise speech.

Stationary Speech

it doesn’t move
it does not move
does not move
it stays
stays
it stays there
it stops
stops
it stops there
it is stationary
it’s stationary
stationary
it does not go in any direction
it doesn’t go in any direction

Table A.10: Rotation direction information request expected stationary speech.
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A.5 Rotational Velocity Information Request

Figure A-5: Rotational velocity information request question: “I can not determine
the rotation of (this shape) now. This shape causes a (clockwise rotation.) <short
pause> <clear stroke> This shape causes a (counterclockwise rotation.) <short
pause> <clear stroke> <short pause> <clear strokes> At this instant what direction
does (this rotate in) or is it balanced?”

The expected stroke type for the rotational velocity information request is a path.

Direction Speech

this direction
like this
it moves in this direction
it goes in this direction
it goes like this
it moves like this

Table A.11: Rotational velocity information request expected direction speech.
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Clockwise Speech

clockwise
it moves clockwise
it rotates clockwise
it goes clockwise
it moves in a clockwise direction
it rotates in a clockwise direction
it goes in a clockwise direction

Table A.12: Rotational velocity information request expected clockwise speech.

Counterclockwise Speech

counter clockwise
it moves counter clockwise
it rotates counter clockwise
it goes counter clockwise
it moves in a counter clockwise direction
it rotates in a counter clockwise direction
it goes in a counter clockwise direction
counterclockwise
it moves counterclockwise
it rotates counterclockwise
it goes counterclockwise
it moves in a counterclockwise direction
it rotates in a counterclockwise direction
it goes in a counterclockwise direction

Table A.13: Rotational velocity information request expected counterclockwise
speech.
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Balanced Speech

balanced
it is balanced
it doesn’t move
it does not move
it doesn’t rotate
it does not rotate
it doesn’t move
it does not move
does not move
it stays
stays
it stays there
it stops
stops
it stops there
it is stationary
it’s stationary
stationary
it does not rotate in any direction
it doesn’t rotate in any direction

Table A.14: Rotational velocity information request expected balanced speech.
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A.6 Pulley Information Request

Figure A-6: Pulley information request question: “What direction does (this shape)
move in at this instant?”

The expected stroke type for the pulley information request is a path.

Direction Speech

this direction
like this
it moves in this direction
it goes in this direction
it goes like this
it moves like this

Table A.15: Pulley information request expected direction speech.

Balanced Speech

balanced
it is balanced
it doesn’t move
it does not move

Table A.16: Pulley information request expected balanced speech.
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A.7 Distance Information Request

Figure A-7: Distance information request question: “How far does (this shape)
(move?)”

The expected stroke type for the distance information request is a path or location.

Forever Speech

it goes forever
it goes off the screen
it keeps going
it moves forever
it moves off the screen
it keeps moving
forever
off the screen

Table A.17: Distance information request expected forever speech.
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Distance Speech

it goes here
it goes this far
it goes to here
it moves here
it moves this far
it moves to here
here
this far
stops here
it stops here

Table A.18: Distance information request expected distance speech.

Stationary Speech

it doesn’t move
it does not move
does not move
it stays
stays
it stays there
it stops
stops
it stops there
it is stationary
it’s stationary
stationary
it does not go in any direction
it doesn’t go in any direction

Table A.19: Distance information request expected stationary speech.
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A.8 Rotation Distance Information Request

Figure A-8: Rotation distance information request question: “How far does (this
shape) (rotate?)”

The expected stroke type for the rotation distance information request is a path.

Forever Speech

it goes forever
it keeps going
it moves forever
it keeps moving
it rotates forever
it keeps rotating
forever

Table A.20: Rotation distance information request expected forever speech.

Rotation Speech

it rotates this far
it rotates like this
it goes this far
it goes like this
it moves this far
it moves like this
this far
like this

Table A.21: Rotation distance information request expected rotation speech.
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Stationary Speech

it doesn’t move
it does not move
does not move
it stays
stays
it stops
stops
it stays there
it stops there
it is stationary
it’s stationary
stationary
it does not go in any direction
it doesn’t go in any direction

Table A.22: Rotation distance information request expected stationary speech.
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A.9 Spring Direction Information Request

Figure A-9: Spring direction information request question: “Will (this spring) expand
or contract?”

The expected stroke type for the spring direction information request is a path.

Expands Speech

it expands
it gets longer
expands
longer
expand

Table A.23: Spring direction information request expected expands speech.

Contracts Speech

it contracts
it gets shorter
contracts
shorter
contract

Table A.24: Spring direction information request expected contracts speech.
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Multimodal Speech

it goes in this direction
it moves in this direction
in this direction
this direction
like this

Table A.25: Spring direction information request expected multimodal speech.

Stationary Speech

neither
neither, it stays the same
it stays the same
stays

Table A.26: Spring direction information request expected stationary speech.
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A.10 Spring Length Information Request

Figure A-10: Spring length information request question: “How far does (this spring)
stretch?”

The expected stroke type for the spring length information request is a path or

location.

Multimodal Speech

this far
to here
here
like this

Table A.27: Spring length information request expected multimodal speech.

Expands Speech

it expands to here
it stretches to here
expands here
stretches here
expands
stretches

Table A.28: Spring length information request expected expands speech.
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Contracts Speech

it contracts to here
it compresses to here
contracts
compresses

Table A.29: Spring length information request expected contracts speech.
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A.11 Spring End Information Request

Figure A-11: Spring end information request question: “(This spring has) reached its
maximum length. What happens next?”

The expected stroke type for the spring end information request is a path.

Expands Speech

it expands
it gets longer
expands
longer
expand

Table A.30: Spring end information request expected expands speech.

Contracts Speech

it contracts
it gets shorter
contracts
shorter
contract

Table A.31: Spring end information request expected contracts speech.

185



Multimodal Speech

it goes in this direction
it moves in this direction
in this direction
this direction
like this

Table A.32: Spring end information request expected multimodal speech.

Stationary Speech

neither
neither, it stays the same
it stays the same
it stops

Table A.33: Spring end information request expected stationary speech.

Indifferent Speech

it doesn’t matter
it does not matter
doesn’t matter
does not matter

Table A.34: Spring end information request expected indifferent speech.

Reverses Speech

it reverses direction
it reverses
reverses

Table A.35: Spring end information request expected reverses speech.
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A.12 Collision Information Request

Figure A-12: Collision information request question: “It looks like {these shapes}
{will collide, do they?}”

Yes Speech

yes
yeah
of course
affirmative

Table A.36: Collision information request expected yes speech.

No Speech

no
nah
of course not
negative

Table A.37: Collision information request expected no speech.
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A.13 Collision Location Information Request

Figure A-13: Collision location information request question: “(These two) (bodies)
collide (here.) <long pause> <clear strokes> Where on (this) body does the contact
occur?”

The expected stroke type for the collision location information request is a path

or location.

Multimodal Speech

it hits here
here
this is the collision location
it collides here
it contacts here
this is
this is the contact location

Table A.38: Collision location information request expected multimodal speech.
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A.14 Next Information Request

The question for the next information request is “What happens next?” and the

expected stroke type is a path.

Multimodal Speech

this moves in this direction
this moves
this rotates
this way
moves
like this
like goes this like this

Table A.39: Next information request expected multimodal speech.

End Speech

that’s it
that’s the end
that is it
that is the end
nothing else happens

Table A.40: Next information request expected end speech.
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Appendix B

Egg Cracker Example

The sequence of images in this appendix illustrates an example of a full interaction

with Midos. The user describes how the egg cracker device functions and Midos

successfully simulates it.
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